


2005 Top 5 U.S. Department of Defense Programs Awards
This annual contest to award quality software development now
recognizes successful application of systems engineering best practices.

Correctness by Construction: A Manifesto for
High-Integrity Software
The elements in this approach to developing large, high-integrity
software systems have been used for more than 15 years to
produce software with very low defect rates cost-effectively.
by Martin Croxford and Dr. Roderick Chapman

Agile Software Development for the Entire Project
Innovative techniques from a new agile process developed and
used by projects within Microsoft span the traditional information
technology roles.
by Granville Miller

Eliminating Embedded Software Defects Prior to
Integration Test
This article shows a viable method of verifying object software
using the same tests created to verify the system design from which
the software was developed.
by Ted L. Bennett and Paul W. Wennberg 

Acquiring Quality Software
Discussed here are six principles of software quality and how to
apply them in software acquisition to get quality software at
reasonable costs and on predictable schedules.
by Watts S. Humphrey

Role of Human Emotions in Requirements Management
This author discusses how human emotions play a very important
role in requirements management and how organizations can deal
with emotional reactions to requirements problems.
by Sreevalli Radhika. T.

Best Best PracticesPractices

2 CROSSTALK The Journal of Defense Software Engineering December 2005

4

5

9

13

19

24

Cover Design by
Kent Bingham.

3

23
27
28
30
31

DeparDepar tmentstments

ON THE COVER

From the Sponsor
From the Publisher

Coming Events

Letter to the Editor

2005 Article Index

Web Sites

BackTalk

PPolicies,olicies, NeNews,ws, andand UpdatesUpdates

TTotal otal CrCreationeation ofof aa SoftwarSoftwaree PrProjectoject

Open Open FForumorum

CrossTalk
76 SMXG

CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Bob Zwitch

Joe Jarzombek

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the U.S. Air Force
(USAF) and the U.S. Department of Homeland
Security (DHS). USAF co-sponsors are the Oklahoma
City-Air Logistics Center (ALC) 76 Software
Maintenance Group (SMXG), Ogden-ALC 309
SMXG, and Warner Robins-ALC 402 SMXG. DHS co-
sponsor is the National Cyber Security Division of
the Office of Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send subscription correspondence
and changes of address to the following address or e-
mail us, or use the form on p. 27.

309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Endorsements and Trademarks:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.
hill.af.mil/crosstalk>, call (801) 777-0857, or e-mail
<stsc.webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Additional art services
provided by Janna Jensen.
jensendesigns@aol.com 

The CrossTalk staff would like to wish you and yours the very
best this holiday season and the happiest of New Years.

 



From the Sponsor

From conception to completion, good software requires a more-than-just-code mind-
set. Good software is the product of the successful execution of hundreds of sound

project and process practices. The list, which requires strict adherence to, might seem
staggering to the casual observer: documented policies and procedures; requirements
management; detailed project planning; system design; configuration management; peer
reviews; tracking and oversight; collecting and managing with metrics; accurate useable
documentation; and thorough testing against requirements at the code, subsystem, and

system levels, just to name a few.
At the next level, good software becomes excellent software through institutionalized quantita-

tive processes that are measured, analyzed, and optimized over time. At Hill Air Force Base, Utah,
the 309th Software Maintenance Group (309 SMXG) has achieved this level by embracing contin-
uous process improvement. The 309 SMXG has an established Capability Maturity Model®

Integration process capability and is adding new capabilities as it strives to implement AS9100 qual-
ity management standard requirements.

Yet it doesn’t stop there. As important as process is, you can’t produce software without peo-
ple. Successful execution occurs at the hands of trained and cross-trained, experienced, mentored,
and motivated people. As systems become larger and more complicated, employees with greater
years of experience become even more important. Like Jim Collins said in his book “Good to
Great,” “...people aren’t your most important asset; the right people are your most important asset.”

Successful Software Is an Epic Production

Randy B. Hill
Ogden Air Logistics Center, Co-Sponsor

December 2005 www.stsc.hill.af.mil 3

From the Publisher

This month we announce that nominations begin for the 2005 Top 5 U.S.
Department of Defense Programs Awards. The Office of the Undersecretary of

Defense is once again recognizing those programs most successful at applying systems
engineering best practices in the management, development, and integration of hard-
ware and software. This award is in line with CrossTalk’s theme this month: total
creation of a software project. Leaders in the software community are constantly
reminding us that good software development involves so much more than developing

code. All the players, including customers, must employ sound practices such as effective
requirements definition, removing defects at their origin, measurement throughout, effective
training, and communication.

We begin our theme section with Correctness by Construction: A Manifesto for High Integrity Systems
by Martin Croxford and Dr. Roderick Chapman, who discuss how these practices apply to the
entire development life cycle. Next, Granville Miller discusses a Microsoft approach to agile
software development in Agile Software Development for the Entire Project. In Eliminating Embedded
Software Defects Prior to Integration Test, Ted L. Bennett and Paul W. Wennberg discuss how testing
software can be performed during the entire development cycle, even design.

In our supporting articles, Watts S. Humphrey’s Acquiring Quality Software discusses using
measurements to ensure quality, and in Role of Human Emotions in Requirements Management,
Sreevalli Radhika. T. discusses how a requirements document might affect the entire develop-
ment process. We wrap up our 18th volume with the Article Index on page 28, highlighting arti-
cles published in 2005.

Software Development Is MoreThan Coding

Elizabeth Starrett
Associate Publisher



Policies, News, and Updates

4 CROSSTALK The Journal of Defense Software Engineering December 2005

MEMORANDUM FOR ALL DOD GOVERNMENT PROGRAM OFFICES

SUBJECT: 2005 TOP 5 U.S. DEPARTMENT OF DEFENSE PROGRAMS AWARDS

The Department of Defense’s Executive Agent for Systems Engineering and the
Systems Engineering Division of the National Defense Industrial Association are pleased
to announce the search for the Top 5 U.S. Department of Defense Programs.

Many organizations are employing processes and practices that result in the
successful delivery of programs to the Department of Defense. Looking at past winners
of this award, it is apparent that successful programs have used well-defined and proven
practices to develop, manage, and integrate hardware and software into deliverable
systems. This award was restructured to recognize successful application of systems
engineering best practices to programs. 

The significant change to the award criteria from past years is the focus on
systems engineering and integration for program success. Nominees will be evaluated as
to their effective application of systems engineering fundamentals (sound life-cycle
technical planning, use of event-based reviews to manage the technical baseline and
control risk, proper application of technical authority, and independent subject-matter
experts in the conduct of technical reviews) across the acquirer and supplier (and sub-tier
supplier) domains.

Top 5 U.S. Department of Defense Programs, with the DoD and industry-winning
organizations, will be announced in the October 2006 issue of the National Defense
Industrial Association’s National DEFENSE magazine, and winners will receive their
awards at the October 2006 NDIA Systems Engineering conference in San Diego,
Calif.

To access the full announcement and the nomination forms, go to www.ndia.org,
then to the Systems Engineering page under Divisions. Nominations must be received no
later than January 30, 2006.

ACQUISITION,
TECHNOLOGY

AND LOGISTICS

Robert Skalamera
Deputy Director, Systems Engineering
Enterprise Development
OUSD(AT&L) DS/SE/ED



Total Creation of a Software Project

The National Institute of Standards
and Technology (NIST) reported in

2002 that low quality software costs the
U.S. economy $60 billion per year [1].
According to the aptly named “Chaos
Report,” only one quarter of software
projects are judged a success [2]. Software
defects are accepted as inevitable by both
the software industry and the long-suffer-
ing user community. In any other engi-
neering discipline, this defect rate would
be unacceptable. But when safety and
security are at stake, the extent of current
software vulnerability is unsustainable.

Recent research on this issue has been
conducted on behalf of the National
Cyber Security Partnership, formed in
2003 in response to the White House
National Strategy to Secure Cyberspace
[3]. The partnership’s Secure Software
Task Force report states the following:

Software security vulnerabilities are
often caused by defective specifica-
tion, design, and implementation.
Unfortunately today, common
development practices can often
leave numerous defects and result-
ing vulnerabilities in the complex
artifact that is delivered software.
To have a secure U.S. cyber infra-
structure, the supporting software
must contain few, if any, vulnera-
bilities. [4]

The report goes on to recommend
adoption of software development
processes that can measurably reduce soft-
ware specification, design, and implemen-
tation defects. It identifies three software
engineering practices as examples that sat-
isfy this recommendation. This article
describes one of these examples,
Correctness by Construction (CbyC), which

originates from Praxis High Integrity
Systems.

Maturity of Approach
The CbyC approach has two primary
goals: to deliver software with defect rates
an order of magnitude lower than current
best commercial practices in a cost-effec-
tive manner, and to deliver durable soft-
ware that is resilient to change throughout
its life cycle.

Elements of the CbyC approach have
been used for more than 15 years to pro-
duce software with very low defects main-
ly for safety-critical applications, but more
recently for security-critical applications.
The approach has evolved over time and
now applies to the entire systems develop-
ment life cycle, from validation of the
concepts of operation to preserving cor-
rectness properties during long-term
maintenance.

CbyC has delivered software with
defect rates of less than 0.1 defects/1,000
source lines of code (SLOC) with good
productivity: up to around 30 LOC per

day. The achieved defect rates compare
very favorably with defect rates reported
by Capability Maturity Model® Level 5
organizations of 1 defect/1,000 LOC [5].
The comparative rates are shown in Figure
1. It is, of course, true that other
approaches have also succeeded in deliver-
ing similarly low defect rates, however, it is
rare to also deliver good productivity
(since low defect rates are often the result
of extensive, expensive debugging and
testing).

As well as realizing low defect rates,
the CbyC approach has also proved to be
highly cost-effective during both develop-
ment and maintenance. Metrics for five
fully deployed projects are shown in
Figure 2 (see page 7).

Given that CbyC and other best-prac-
tice approaches cited in the National
Cyber Security Summit Task Force report
[4] have been used so successfully for a
number of years, you may ask: Why are
these approaches not in more widespread
use, especially where high levels of assur-
ance are required?

Correctness by Construction:
A Manifesto for High-Integrity Software

Martin Croxford and Dr. Roderick Chapman
Praxis High Integrity Systems

High-integrity software systems are often so large that conventional development processes cannot get anywhere near achieving
tolerable defect rates. This article presents an approach that has delivered software with very low defect rates cost-effectively.
We describe the technical details of the approach and the results achieved, and discuss how to overcome barriers to adopting
such best practice approaches. We conclude by observing that where such approaches are compatible and can be deployed in
combination, we have the opportunity to realize the extremely low defect rates needed for high integrity software composed of
many million lines of code.

Correctness by Construction Defect Rates
Compared to Capability Maturity Model® Data

0
1
2
3
4
5
6
7
8

C
M

M
®

L
e
ve

l1

C
M

M
L
e
ve

l2

C
M

M
L
e
ve

l3

C
M

M
L
e
ve

l4

C
M

M
L
e
ve

l5

C
o
rr

e
ct

n
e
ss

by
C

o
n
st

ru
ct

io
n

CMM® data from [5]

D
e
fe

c
ts

/1
,0

0
0

L
O

C

Figure 1: Correctness By Construction Defect Rates Comparison 

 

Figure 1: Correctness by Construction Defect Rates Comparison

December 2005 www.stsc.hill.af.mil 5

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.



Before considering the barriers to
adoption of best practices, it is necessary
to examine the nature of CbyC. A more
detailed white paper on CbyC [6] is freely
available from the authors.

Fundamental Principles
The primary goals of very low defect rate
and very high resilience to change are real-
ized in CbyC by two fundamental princi-
ples: to make it difficult to introduce
errors in the first place, and to detect and
remove any errors that do occur as early as
possible after introduction.

The key to implementing these princi-
ples is to introduce sufficient precision at
each step of the software development to
enable reasoning about the correctness of
that step – reasoning in the sense that an
argument for correctness can be estab-
lished either by review or using tool sup-
port. The aim is to demonstrate or argue
the software correctness in terms of the
manner in which it has been produced (by
construction) rather than just by observing
operational behavior.

It is the use of precision that differen-
tiates approaches such as CbyC from oth-
ers in common use. Typically, software
development approaches endure a lack of
precision that makes it very easy to intro-
duce errors, and very hard to find those
errors early. Evidence for this may be
found in the common tendency for devel-
opment life cycles to migrate to an often-
repeating code-test-debug phase, which can
lead to severe cost and timescale overruns.

Conversely, the rigor and precision of
the CbyC approach means that the require-
ments are more likely to be correct, the
system is more likely to be the correct sys-
tem to meet the requirements, the imple-
mentation is more likely to be defect-free,
and upgrades are more likely to retain the
original correctness properties.

Achieving the Fundamental
Principles
The principles of making it difficult to
introduce defects and making it easy to
detect and remove errors early are
achieved by a combination of the follow-
ing six strategies:
1. Using a sound, formal notation for

all deliverables. For example, using Z
[7] for writing specifications so it is
impossible to be ambiguous, or using
SPARK [8] to write the code so it is
impossible to introduce errors such as
buffer overflows.

2. Using strong, tool-supported meth-
ods to validate each deliverable. For
example, carrying out proofs of formal

specifications and static analysis of
code. This is only possible where for-
mal notations are used (strategy No. 1).

3. Carrying out small steps and vali-
dating the deliverable from each
step. For example, developing a soft-
ware specification as an elaboration of
the user requirements, and checking
that it is correct before writing code.
For example, building the system in
small increments and checking that
each increment behaves correctly.

4. Saying things only once. For exam-
ple, by producing a software specifica-
tion that says what the software will
do and a design that says how it will
be structured. The design does not
repeat any information in the specifi-
cation, and the two can be produced
in parallel.

5. Designing software that is easy to
validate. For example, writing simple
code that directly reflects the specifica-
tion, and testing it using tests derived
systematically from that specification.

6. Doing the hard things first. For
example, by producing early proto-
types to test out difficult design issues
or key user interfaces.
These six principles are not in them-

selves difficult to apply, and may even
appear obvious. However, in the authors’
experience, many software development
projects fail to deliver against many, if any,
of these principles.

Requirements Engineering
At the requirements step (a source of half
of project failures [2]), a clear distinction
is made between user requirements, sys-
tem specifications, and domain knowl-
edge. CbyC uses satisfaction arguments to
show that each user requirement can be
satisfied by an appropriate combination of
system specification and domain knowl-
edge. The emphasis on domain knowledge
is key – half of all requirements errors are
related to domain [9] – yet the vast major-
ity of requirements processes do not
explicitly address issues in the domain.

Formal Specification and
Design
Using mathematical (or formal) methods
and notations to define the specification
and high-level design provide a precise
description of behavior and a precise
model of its characteristics. This enables
using tools to verify that the design meets
its specification and that the specification
meets its requirements.

Example languages used for formal
specification in CbyC projects include Z

and Communicating Sequential Processes
[10].

Development
The CbyC approach applies rigor to all
software development phases, including
detailed design, implementation, and veri-
fication. As a result, static analysis tools
can be used to produce evidence of cor-
rectness and completeness.

CbyC defines a software design
methodology based on information flow
that can be expressed using an unambigu-
ous notation. This notation is contract-
based, i.e., it is used to define both the
abstract state and the information rela-
tionships across the software modules.

For the coding phase, the CbyC
approach recommends using languages
and tools that are most appropriate for the
task at hand. Validation requirements play
a large role in this choice: The selected
languages must be amenable to verifica-
tion and analysis so that the required evi-
dence of correctness can be generated
effectively. For high-integrity software
modules, the SPARK programming lan-
guage is especially suitable owing to its rig-
orous and unambiguous semantics.

Using mathematically verifiable pro-
gramming languages such as SPARK
opens the way for static analysis tools to
provide proofs for absence of common
runtime errors such as buffer overflows
and using uninitialized variables. Being
able to prove absence of runtime errors,
rather than discovering a subset of them
by testing, is critical to the achievement of
very low defect rates.

Note that other programming lan-
guages have been used for CbyC projects,
and that CbyC projects often have an ele-
ment of mixed-language implementation.
For example, C, C++, Structured Query
Language (SQL), Ada ’83 and Ada ’95
have been used. However, such languages
are intrinsically unsuitable for deep static
analysis and are only ever used for the
non-critical parts of the implementation.

Results
Experience from a wide variety of proj-
ects has confirmed that CbyC is both
effective and economical due to the fol-
lowing:
1. Defects are removed early in the

process when changes are cheap.
Testing becomes a confirmation that
the software works, rather than the
point at which it must be debugged.

2. Evidence needed for safety or security
certification is produced naturally as a
byproduct of the process.

3. Early iterations produce software that

Total Creation of a Software Project

6 CROSSTALK The Journal of Defense Software Engineering December 2005



Correctness By Construction: A Manifesto for High-Integrity Software

carries out useful functions and builds
confidence in the project.
Figure 2 shows results from three safe-

ty-critical and two security-critical projects
that have used elements of the CbyC
approach. For all of these projects, the
reported productivity figures are for the
whole life cycle, from requirements to
delivery.

The Ship/Helicopter Operating Limits
Information System [11] was developed in
1997 and was the first project to be devel-
oped to the full degree of rigor required
by the United Kingdom (UK) Ministry of
Defence (MoD), Defence Standard 00-55
[12] at the highest safety integrity level.

The certification authority system to
support the Multimedia Office Server
(MULTOS) smart card operating system
developed by Mondex International [13]
was developed to the standards of the
Information Technology Security
Evaluation Criteria (ITSEC) Level E61,
roughly equivalent to Common Criteria
Evaluation Assurance Level (EAL) 7. The
system had an operational defect rate of
0.04 defects/KLOC, yet was developed at
a productivity of almost 30 LOC per day
(three times typical industry figures).

CbyC was used in 2003 to develop a
demonstrator biometrics system for the
National Security Agency (NSA), aimed at
showing that it is possible to produce
cost-effective, high-quality, low-defect
software conforming to the Common
Criteria EAL 5 and above [14]. The soft-
ware was subjected to rigorous independ-
ent reliability testing that identified zero
defects and was developed at a productiv-
ity of almost 40 LOC/day.

These and other similar projects have
demonstrated that the rigorous techniques
employed by CbyC such as formal meth-
ods and proofs should no longer be
viewed as belonging solely to academia,
but can be used confidently and effective-
ly in the commercial sector.

Barriers to Adoption
Earlier, the question asked was why best
practices such as CbyC and others refer-
enced by [4] are not in widespread use.
The authors contend that there are two
kinds of barriers to the adoption of best
practices.

First, there is often a cultural mindset
or awareness barrier. Many individuals and
organizations do not recognize or believe
that it is possible to develop software that
is low-defect, high-integrity, and cost-
effective. This may simply be an awareness

issue, in principle readily addressed by arti-
cles such as this. Or there may be a view
that such best practices could never work here
for a combination of reasons. These rea-
sons are likely to include perceived capa-
bility of the staff, belief about applicabili-
ty to the organization’s product or process,
prevalence of legacy software that is
viewed as inherently inappropriate for
such approaches, or concern about the
disruption and cost of introducing new
approaches.

Second, where the need for improve-
ment is acknowledged and considered
achievable, there are usually practical bar-
riers to overcome such as how to acquire
the necessary capability or expertise, and
how to introduce the changes necessary to
make the improvements.

Overcoming the Barriers
The barriers mentioned above are reason-
able and commonplace, but not insur-
mountable. Overcoming them requires
effort from suppliers, procurers, and regu-
lators and involvement at the individual,
project, and organizational level. Typically,
strong motivation and leadership will be
required at a senior management level
where the costs to the business of poor
quality (high defects, low productivity, and
lack of resilience to change) are most like-
ly to be experienced.

The authors have worked with a num-
ber of organizations to overcome these
barriers. For example, the MULTOS sys-
tem was delivered to Mondex
International, along with three weeks train-
ing in the techniques used to develop it,
and three weeks of part-time mentoring.
Mondex has since successfully maintained
the system – to the same development

standards – with no further support from
Praxis. The NSA system was successfully
adapted by summer interns during a 12-
week placement after minimal training in
the techniques used to develop it.

The key to successful adoption of
CbyC is the adoption of an engineering
mindset. In particular, decisions on
process, methods, and tools for software
development need to be premised on the
basis of logic and precision (for example,
by asking, “How does this choice help me
meet one of the six strategies of CbyC?”),
rather than on fashion (characterized by
questions such as, “How many developers
already know this particular technolo-
gy?”).

Procurers have a role in overcoming
barriers to best practices by demanding
low defects. Regulation also has a role to
play in requiring best practices; this is
already happening within the security sec-
tor, for example Common Criteria EAL 5
and above, and within the safety sector,
particularly in Europe, for example in the
UK Civil Aviation Authority regulatory
objectives for software [15] and the UK
MoD safety standard 00-55 [12].

Maximizing the Benefit
Given the massive size of many software
systems – some of which need to be high
integrity – even a defect rate of 0.04
defect per KLOC may result in an unac-
ceptably high number of faults. To
address this, we need to employ a combi-
nation of compatible defect-prevention
approaches.

One of the other identified approach-
es in the Secure Software Task Force
report is the Team Software ProcessSM

(TSPSM) and Personal Software ProcessSM

December 2005 www.stsc.hill.af.mil 7

Figure 2: Correctness By Construction Project Metrics 

Figure 2:  Correctness by Construction Project Metrics 

CDIS1 197,000   12.7 0.75 

SHOLIS2 27,000 7.0 0.22 

MULTOS CA3 100,000 28.0 0.04 

A4 39,000 11.0 0.05 

NSA5 10,000 38.0 0

Notes
1 Real-time air traffic information system at the London Terminal Control Centre. 
2 Ship/Helicopter Operating Limits Information System developed to UK MoD Defence 

Standard 00-55 Safety Integrity Level 4 (highest). 
3 Certification authority for smart card operating system maintained by Mastercard. 
4 A UK military stores management system. 
5 NSA Tokeneer ID Station demonstrator biometrics system. 

Whole Life-Cycle
Productivity
(SLOC/day)

Defects
(/1,000 SLOC)

Size (SLOC)Project Year

2001

2003

1992

1997

1999

Figure 2: Correctness By Construction Project Metrics

SM Team Software Process, Personal Software Process, TSP,
and PSP are service marks of Carnegie Mellon
University.



Total Creation of a Software Project

(PSPSM) from the Software Engineering
Institute [16]. Since the focus of TSP/PSP
is on improving the professional culture
and working practices of individuals,
teams, and management, and hence is
largely independent of languages, tools,
and methodologies that are used, the
deployment of CbyC within an environ-
ment such as TSP/PSP is highly feasible
and has already been demonstrated: A
CbyC practitioner’s results at a recent PSP
training course were both defect-free and
first to be completed. Given that the
TSP/PSP approach has also demonstrated
a very low defect rate, the combination of
these approaches offers the best opportu-
nity to realize the orders of magnitude
reduction in a defect rate that are needed
for a multi-million LOC high-integrity
software subsystem.

Conclusions
Critical software subsystems are now large
enough such that conventional develop-
ment processes cannot get anywhere near
reducing defect rates to tolerable levels.

A mature approach based on applying
rigor and precision to each phase of the
life cycle has demonstrated over the past
15 years that major improvements in
defect rate are attainable while maintain-
ing productivity levels and overall cost-
effectiveness.

Where such compatible approaches
can be deployed in combination, we can at
last see extremely low defect rates needed
for high-integrity software composed of
many million lines of code.u

Acknowledgements
The authors acknowledge contributions
from Brian Dobbing, Peter Amey, and
Anthony Hall of Praxis High Integrity
Systems.

References
1. Research Triangle Institute. The Eco-

nomic Impacts of Inadequate Infra-
structure for Software Testing. Ed. Dr.
Gregory Tassey. RTI Project No.
7007.011. Washington, D.C.: National
Institute of Standards and Technolo-
gy, May 2002 <www.mel.nist.gov/
msid/sima/sw_testing_rpt.pdf>.

2. Standish Group International. The
Chaos Report. West Yarmouth, MA:
Standish Group International, 2003
<www.standishgroup.com>.

3. National Cyber Security Partnership.
“About the National Cyber Security
Partnership.” Washington, D.C.: NCSP,
18 Mar. 2004 <www.cyberpartner
ship.org/about-overview.html>.

4. National Cyber Security Task Force.

“Improving Security Across the
Software Development Life Cycle.”
Washington, D.C.: National Cyber
Security Partnership, 1 Apr. 2004
<www.cyberpartnership.org/init-soft.
html>.

5. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Reading, MA: Addison-Wesley, 2000.

6. Praxis High Integrity Systems.
“Correctness by Construction: A
White Paper.” Issue 1.2, Jan. 2005.
Please contact the authors for a copy
of this paper.

7. Spivey, J.M. The Z Notation: A
Reference Manual. 2nd ed. Prentice-
Hall, 1992.

8. Barnes, J. High Integrity Software: The
SPARK Approach to Safety and
Security. Addison-Wesley, 2003.

9. Hooks, Ivy F., and Kristin A. Farry.
Customer Centered Products: Creating
Successful Products Through Smart
Requirements Management. 1st ed.
New York: American Management
Assoc., 11 Sept. 2000.

10. Hoare, C.A.R. Communicating Se-
quential Processes. Prentice-Hall,
1985.

11. King S., J. Hammond, R. Chapman,
and A. Pryor. “Is Proof More Cost-
Effective Than Testing?” IEEE

Transactions on Software Engineering
26.8 (Aug. 2000) <www.praxis-his.
com/pdfs/cost_effective_proof.pdf>.

12. United Kingdom Ministry of Defence.
“Def. Stan. 00-55.” Requirements for
Safety Related Software in Defense
Equipment Issue 2, Aug. 1997.

13. Hall, A., and R. Chapman R.
“Correctness by Construction: Devel-
oping a Commercial Secure System.”
IEEE Software Jan./Feb. 2002 <www.
praxis-his.com/pdfs/c_by_c_secure
_system.pdf>.

14. National Security Agency. Fourth
Annual High Confidence Software and
Systems Conference Proceedings.
Washington, D.C.: NSA, Apr. 2004.

15. United Kingdom Civil Aviation
Authority. “CAP 670, Air Traffic
Services Safety Requirements.
Amendment 3.” UKCAA, Sept. 1999.

16. Humphrey, W. Introduction to the
Team Software Process. Addison-
Wesley, 2000.

Note
1. Information about ITSEC and the

Common Criteria can be found at
<www.cesg.gov.uk/site/iacs/index.
cfm>.

8 CROSSTALK The Journal of Defense Software Engineering December 2005

About the Authors

Martin Croxford is
associate director for
security with Praxis
High Integrity Systems,
a United Kingdom-
based systems engineer-

ing company specializing in mission-
critical systems. He is a chartered engi-
neer with 15 years experience in the
software industry. Croxford has
worked on software development proj-
ects in a range of organizations, and as
a software development manager has
used Correctness by Construction to
successfully deliver a multi-million dol-
lar security-critical system.

Praxis High Integrity Systems
20 Manvers ST
BATH BA1 1PX
UK
Phone: (44) 1225-823794
Fax: (44) 1225-469006
E-mail: martin.croxford@

praxis-his.com

Roderick Chapman,
Ph.D., is product man-
ager of SPARK with
Praxis High Integrity
Systems, specializing in
the development of

programming languages and static
analysis tools for high integrity systems.
He is a chartered engineer with more
than a decade of experience in high
integrity real-time systems. Chapman is
internationally renowned for his work
on verification of correctness proper-
ties of high integrity software. He has a
Doctor of Philosophy in computer sci-
ence.

Praxis High Integrity Systems
20 Manvers ST
BATH BA1 1PX
UK
Phone: (44) 1225-823763
Fax: (44) 1225-469006
E-mail: rod.chapman@

praxis-his.com



December 2005 www.stsc.hill.af.mil 9

Many of today’s more popular agile
software development processes

concentrate strictly on the developer and
project manager. Traditional information
technology (IT) roles such as business
analysts, architects, and testers do not play
a part in many of these agile processes.
Yet, most software product and IT organ-
izations have these roles or their equiva-
lent. What is more, they are not ready to
give up on them. On the contrary, these
roles are becoming more valuable rather
than less so as distributed development
becomes more prevalent.

There are other practices such as the
on-site customer, universal code owner-
ship, pair programming, and stand up
meetings that have proven barriers to
widespread adoption of the more popular
agile processes in many organizations. We
have heard that it is mythical that these
practices are required to be agile [1].
However, we have not been offered alter-
natives in a process form. This article
introduces Microsoft Solutions
Framework (MSF) for Agile Software
Development, a context-based, agile soft-
ware development process for building
.NET applications [2]. This new process
provides innovative techniques to extend
agile software development to all of the
traditional IT roles.

MSF for Agile Software Development
is composed of a set of proven practices
commonly used to build software at
Microsoft. These practices have been col-
lected in an agile form and used by teams
both inside and outside of Microsoft.
This process provides a set of practices
that complement each other; that is, the
sum of the practices is greater than each
one used in isolation [3]. It also presents
alternative practices to those commonly
found in many agile processes.

The Agile Pattern
The core of any agile software develop-
ment process is the way that it partitions

and plans the work. Most agile processes
share a similar method of planning or the
planning game [4]. To start, a project is
divided into time boxes or fixed periods in
which development is done. These time
boxes are called iterations. The iteration
length is usually fixed between two to
eight weeks, although really small projects
have been known to set the iteration
length in days or even hours.

In each time box, we schedule work
from two lists, our version of the product
backlog [5]. The first is the scenario list
that contains the names of scenarios (or
scenario entries) that serve as placehold-
ers for necessary functionality. The sec-
ond is the quality-of-service requirement
list that contains a list of requirements in
areas such as performance, platform, or
security. The scenarios and quality-of-
service requirements in these lists are pri-
oritized, and rough order-of-magnitude
estimates are initially provided by the
developers.

Scenarios and quality-of-service re-
quirements are selected for the upcoming

iteration and placed in the iteration plan
(the equivalent of the sprint backlog [5]).
The amount of work that is chosen is
based upon the previous iteration’s veloc-
ity. Once selected for iteration, more
detailed scenario information is written by
the business analyst. After the detailed
information is provided, developers
divide the scenarios into tasks and pro-
vide more detailed costs for the tasks. The
costs are checked to make sure no devel-
oper is overloaded.

All of this planning occurs in a stag-
gered manner. For example, our business
analyst and project manager are working
on planning iteration 1 in iteration 0.
Developers spend a negligible portion of
their time dividing the scenarios (and
quality-of-service requirements) into tasks
and choosing their tasks for the next iter-
ation. However, most of their time is
spent completing their tasks for the cur-
rent iteration.

Development tasks are just one form
of work breakdown that occurs. Testers
and architects also create tasks as part of
the iteration plan. These roles are inte-
grally involved in ensuring that the solu-
tion is well architected and tested. They
work in conjunction with the developers,
business analysts, and project managers to
ensure the system holds together. We will
explore the nature of the architect and
test roles later in this article.

Customer Collaboration
Over Contract Negotiation1

There is no denying that the on-site cus-
tomer, a customer that can work directly
with the team to explain what is required
of the system, is probably the best way to
ensure project success. Unfortunately,
most users have jobs other than guiding
the delivery of a new system. It is rather
ironic that the very thing that leads to a
successful project is such a rare occur-
rence.

Agile Software Development for the Entire Project

Granville Miller
Microsoft

Does an agile software development process require real organizational change or can an existing organization become
more agile? How do the many traditional information technology (IT) roles such as the business analyst, architect, and
tester become a more integrated part of an agile process? Some recent work [1] debunks the myths that agile processes
require on-site customers, produce ad-hoc requirements and design, and cannot scale to large projects. This article furthers
this work by introducing innovative techniques from a new agile process developed and used by projects within Microsoft.
These techniques span the traditional IT roles such as the business analyst, project manager, architect, developer, tester,
and release manager.

“The personas describe
usage patterns,

knowledge, goals,
motives, and concerns
of a group of users.

The key to good
personas is that they
are memorable and
represent a set of

typical customers.”



At Microsoft, lack of time is only one
reason our users may not be able to be
on-site. They may be located in a differ-
ent city or even a different country. They
may not be a part of our company at all
in the case of commercial products. In
any of these circumstances, our ability to
interact with these users may be limited.
When we obtain the opportunity to inter-
act, we need to make the most of it. We
also need to be able to communicate the
essence of these interactions to the rest
of the team.

Of course, this is exactly what the
business analyst2 is supposed to do in
most organizations. In cases where travel
is necessary to interact with users, they
go. After all, nothing interesting happens
in the office. We send these folks to meet
with our customers because sending
developers on frequent trips has an
adverse affect on the project’s velocity.
However, customer knowledge should
not be locked in a few people’s heads.
Instead, it should be shared with the
entire team.

Sharing details of a customer visit is
commonly performed in most organiza-
tions with trip reports. However, trip
reports are an inadequate vehicle for pro-
viding anything more than a cursory
insight into the customers. Instead,
Microsoft utilizes a technique called per-
sonas as a basis for bringing the spirit of
the customer to the entire development
team [7]. Personas are respectful, ficti-
tious people that represent groups of
users. The personas describe usage pat-
terns, knowledge, goals, motives, and
concerns of a group of users. The key to
good personas is that they are memorable
and represent a set of typical customers.

Personas can also be compared to
actors in use-case models [8]. An actor is
an entity that interacts with the system.
Human actors are instances of a role.
The actor often contains very little infor-
mation other than this role name.
Therefore, while an on-site customer can
usually provide us with better insight, an
actor provides fewer details about the
user community than a persona. In fact,
actors make the assumption that all of
the people that play a given role interact
with the system in the same way.

Personas allow all of the members of
the development team to obtain a deeper
understanding of the user community.
Design, development, and test decisions
can often be made purely on the basis of
a good persona. This allows the team to
maintain velocity even when the business
analyst is on the road. Personas must be
constantly refined as new information is

learned through interactions with the
users. Posters of the personas can be
found on the walls in the halls of the
Microsoft campus.

In addition to writing the personas,
the business analyst also generates the
scenario entries in the scenario list. Once
a scenario is scheduled for iteration, the
business analyst writes up the details of
that scenario. Personas are used in these
scenario descriptions to show how a user
would interact with the system. This pro-
vides the development team with an even
deeper insight into the user community
through understanding how the personas
interact with the system.

Finally, there is no substitute for
reviews of system functionality after key
iterations with the customer. There are
many vehicles for these reviews from

actual working systems to storyboards
with screen captures in cases where it is
impossible to simulate the deployment
environment in the area where the review
is held. Experience at Microsoft has
shown that using personas in conjunction
with scenarios leads to fewer changes
resulting from these reviews than when
personas were not used. Ultimately, a cer-
tain amount of change occurs when
reviewing newly built systems even when
an on-site customer is present.

Working Software Over
Documentation3

The goal of each iteration is to produce
working software. The agile community
believes that those activities that do not
contribute to this working software are
considered lower priority, if not detract-
ing. Unfortunately, there is also a general
belief that many of the traditional archi-
tectural activities fall into this category.

To be clear, the agile philosophy does

not hold a belief that architecture is
unbeneficial. Instead, it is a reaction to
some of the large design efforts that were
performed at the beginnings of projects
and later found to be flawed. This form
of design is known as big design up front
(BDUF). The objection that the agile
community has to BDUF is that without
working software, these efforts have no
feedback mechanism. Therefore, quite a
bit of time can go into these efforts with-
out an understanding of whether they are
constructive or not. Many projects found
that their implementation technology did
not support these designs and a consider-
able amount of time had been wasted.

Architecture is an important part of
any project, agile or otherwise. It is espe-
cially important in the larger agile proj-
ects [9]. However, architecture must lead
as well as reflect the structure and logic
of the working code. Disconnected
architectural efforts are often greeted
with skepticism by the developers who
are building the pieces of the system.
However, understanding every detail of a
system, especially a larger one is beyond
most people’s capability. Architects have
their hands full just keeping abreast of
the changes for iteration. Therefore,
keeping the architecture synchronized
should be as simple as a whiteboard
drawing and as equally expressive [10].

Architects must therefore take a
broad view of the system in addition to
understanding a certain depth. This
breadth is important on larger, more
complex projects. When a project spans
multiple teams, it is important to com-
municate responsibility and overall sys-
tem structure. As larger, agile projects
require teams of teams, communication
between the teams becomes especially
important. Representing the needs of the
solution as a whole is the architects’
responsibility.

To create an agile architecture, MSF
utilizes shadowing. A shadow is architec-
ture for the functionality to be completed
in the iteration. The shadow leads the
working code at the beginning of itera-
tion as the architects get out in front of
the development for the iteration. During
this time, the architecture and the work-
ing code are not in sync. This shadow
communicates any re-architecting or
redesign that needs to occur to keep the
code base from becoming a stove pipe,
spaghetti code, or one of the many other
architectural anti-patterns [11].

As the pieces of the leading shadow
are implemented, the architecture begins
to reflect the working code base. The
original parts of the system that were

Total Creation of a Software Project

10 CROSSTALK The Journal of Defense Software Engineering December 2005

“As larger, agile projects
require teams of teams,
communication between

the teams becomes
especially important.

Representing the needs
of the solution as a

whole is the architects’
responsibility.”



Agile Software Development for the Entire Project

architected but not implemented now
become implemented. When the archi-
tecture represents the working code, we
call the shadow a trailing shadow. As the
sun sets on the iteration, the leading
shadow should be gone and replaced
strictly by trailing shadow. The trailing
shadow is an accumulation of the archi-
tectures over all the iterations.

To keep architecture from becoming
too detailed, we recommend that it be
focused at the component and deploy-
ment levels. For example, a smart client
system for generating budget informa-
tion may consist of a Windows client and
a number of Web Services [12]. Each of
these Web services, the underlying data-
base server, and the client itself would be
components in this model. Remaining at
the component level keeps architects
from becoming the police of low-level
design, although it never hurts to get tips
from a more experienced developer.

The Microsoft terminology for one of
these deployable components such as a
Web service or database server is an appli-
cation. One of the chief tools for the MSF
architect is the application diagram, the
equivalent of the component diagram in
the Unified Modeling Language. Since
the application diagram focuses on more
concrete entities such as a Windows
application, ASP.NET Web service, or
external database, more system-level
detail can be provided.

Shadowing is applied at the compo-
nent or applications level. A shadow
application initially communicates a
desired change in the component-level
behavior of a system. Shadow applica-
tions become invaluable when multiple
teams are trying to coordinate work
across multiple components. Changes
can be made without affecting the code
base until the architecture is ready to be
implemented. Next, the code is generat-
ed4 or written for the shadow and the
leading shadow is removed and replaced
with a trailing shadow.

The planning process for creating
shadow applications is similar to the agile
pattern used to partition and plan the
development work for the system. New
architecture tasks are created at the
beginning of the iteration when any
structural changes need to be made to the
architecture to accommodate the new
scenarios or quality-of-service require-
ments. Architecture tasks are like the
development or coding tasks that are
used to divide the scenarios into the
lower-level pieces that can be assigned to
a single developer. However, they pertain
to the architectural functions that must

be performed to keep the system from
entropy5.

As a result of these tasks, the archi-
tect will add the endpoints or interfaces
to the shadow applications to reflect the
needs of the new requirements. These
endpoints can be validated to ensure that
the components such as Web services
will work together properly in the context
of the deployment environment. The
endpoints of these applications can be
connected to show how the components
interact. Each application may be distrib-
uted on a separate machine or clustered
to work together on a single machine.

As the development team becomes
ready to implement the scenarios, the
endpoints are deleted from the shadow
applications and added to the application
that represents working code. Unit tests
are created for each side of the compo-
nent to ensure that the proper functional-
ity is provided and unit-tested. Finally,
working code is written for these new
endpoints.

At the end of the iteration, all of the
proxy or unimplemented endpoints
should be gone. In other words, all of the
architecture should be translated into
working code. The architectural model is
not divorced from the working system,
but rather is a reflection of it. This makes
the documentation for the component
model match the working system. Unit
tests should be in place to make sure that
the interfaces continue to work as new
functionality is added.

Shadow applications provide many
advantages. They keep the high-level
design of the components in the system
consistent with the code base. They allow
larger teams to define responsibilities in
the context of an agile architecture.
Shadow applications are used to track the
building of functionality across compo-
nent boundaries. In this way, they allow
MSF for Agile Software Development to
scale to larger, more complex projects.

Individuals and Interactions
Over Processes and Tools6

The idea of valuing people over process-
es and tools is not an indication to move
away from the use of today’s advanced
tools. In fact, one of the roots of the
agile revolution is the advance of the
compiler technology provided by our
software development tools. These com-
pilers have made it easier for us to build
systems incrementally. If compilation
times took hours, as they did in the past,
instead of seconds or minutes, can you
imagine performing one refactoring at a

time? Can you imagine running a unit test
first to see it purposely fail after waiting
two hours for it to compile? 

As our development tools have
advanced, so has our capability to take
advantage of these advances in our devel-
opment processes. However, developing
software is ultimately an activity for
knowledge workers. The static nature of
tools and processes is no match for the
adaptation that people can provide to
deal with the ever-changing nature of our
project and our industry.

Each project operates under a differ-
ent climate and set of working condi-
tions. The factors that influence a project
include size, criticality, deadline, and
required quality. There is a general per-
ception that you always need to change
the process to deal with these project dif-
ferences. Creating agile processes for
each of these types of projects would
mean that there would be hundreds of
new agile processes. Instead, we can
understand how these factors affect our
process and utilize a context-based
approach.

A context-based process allows us to
tune the process to the context of our
project. The quality criteria used for
release are often driven by the project
type. Context-driven testing bases the test
approach on the factors of each project
as well. The idea behind context-driven
testing is that the successful approach to
testing one type of application may be
criminal on another type. Test thresholds,
metrics for determining the shipping
quality, may be used to govern the test
and release approach.

The test thresholds are determined by
the project team and recorded by the test
team. Only one test threshold is required
of an MSF project. This is code coverage
for unit tests, a metric that measures the
percentage of code that is tested by a set
of unit tests. Like many of the other agile
processes, MSF for Agile Software
Development requires unit testing as part
of its development activities.

However, the effectiveness of this
safety net is measured in MSF. Normal
test-driven development can account for
50 percent to 70 percent code coverage
on many projects, but to achieve higher
levels of code coverage requires more
complex techniques such as mock objects
[13]. Some projects, like a data converter
for a one-time use, may be fine with a
lower unit testing code coverage thresh-
old for this safety net. A critical system
such as an automatic pilot system proba-
bly requires a greater level of unit testing.

These metrics may be extended to

December 2005 www.stsc.hill.af.mil 11



Total Creation of a Software Project

12 CROSSTALK The Journal of Defense Software Engineering December 2005

govern the project as well. For example,
maximum bug debt, the maximum num-
ber of bugs that a developer may have,
can be used to determine when an itera-
tion devoted to fixing bugs (called bug
allotment iteration) should be scheduled.
When the number of bugs exceeds this
threshold, this is an indication for the
project manager to provide a whole or
part of iteration for fixing bugs.

Responding to Change Over
Following a Plan7

Wouldn’t it be nice if you knew exactly
what had to be done at the beginning of a
project? How about if there were
absolutely no surprises during the project?
There are a few very small, straightfor-
ward projects that enjoy this nirvana.
When the rest of us try to achieve this
ideal condition, we find ourselves faking a
rational design process or behaving as if
change does not happen [14].

However, in the real world of software
development, requirements change. We
may also discover an aspect of the tech-
nology that we are using that we did not
previously know. We learn about the sys-
tem that we are building in the process of
building it. The fact is, we can talk about
these fairy-tale projects where change
does not occur, but reality has a nasty
habit of creeping in.

So why not plan for reality rather than
trying to aspire to a mythical standard that
is unattainable? In fact, we can do even
better; we can use reality to develop more
optimal software development processes.
While our business analysts are gathering
the requirements, what are our developers
doing? How about our project managers?
While our project managers are planning,
what are our developers doing? How
about our testers?

The answer is that they should all be
working in parallel. While our business
analysts understand the requirements, our
project managers are planning, our devel-
opers are developing, and our testers are
testing. How can we do this? We accom-
plish this through staggering the work,
setting up coordination points, and pro-
viding only what is needed in a just-in-
time fashion. For example, we only write
the scenarios for the upcoming iteration,
we plan one iteration at a time, architect
only the necessary pieces, develop the
functionality in the iteration plan only for
this iteration, and write test cases for func-
tionality planned in the current iteration.

Conclusion
Personas, shadow applications, and test

thresholds are part of Microsoft’s new
agile software development process, MSF
for Agile Software Development. These
techniques provide alternate ways to sat-
isfy the value statements of the Agile
Alliance. They have been proven through
their repeated use in delivering Microsoft
software development projects.

Becoming agile is as much about
changing your state of mind as it is the
adoption of new practices. This article
shows some new techniques to introduce
agile software development to many of
the roles that have not been included in
many of the agile processes. By using
these techniques in an agile way, we can
extend agile software development
processes to the entire organization.u

References
1. McMahon, Paul E. “Extending Agile

Methods: A Distributed Project and
Organizational Improvement Perspec-
tive.” CrossTalk May 2005 <www.
stsc.hill.af.mil/crosstalk/2005/05/05
05McMahon.html>.

2. Microsoft Developer Network. The
MSF for Agile Software Development
Workbench. Microsoft Corporation,
18 Sept. 2005 <http://lab.msdn.
microsoft.com/teamsystem/work
shop/msfagile/default.aspx>.

3. Miller, Granville. “Want a Better
Software Development Process?
Complement It.” IEEE IT Profes-
sional 5.5 (Sept./Oct. 2003): 49-51.

4. Beck, Kent, and Martin Fowler.
Planning Extreme Programming.
Addison-Wesley, 2000.

5. Schwaber, Ken. Agile Project
Management With Scrum. Microsoft
Press, 2004.

6. Beck, Kent, et al. “Manifesto for Agile
Software Development.” Agile
Alliance, Feb. 2001 <www.agile
manifesto.org>.

7. Cooper, Alan. The Inmates Are
Running the Asylum: Why High Tech
Products Drive Us Crazy and How to
Restore the Sanity. 2nd ed. Sams, 2004.

8. Armour, Frank, and Granville Miller.
Advanced Use Case Modeling: Soft-
ware Systems. Addison-Wesley, 2000.

9. Eckstein, Jutta. Agile Software
Development in the Large: Diving
Into the Deep. Dorset House
Publishing, 2004.

10. Ambler, Scott. Agile Modeling:
Effective Practices for eXtreme
Programming and the Unified Process.
Wiley, 2002.

11. Brown, William J., Raphael C.
Malveau, Hays W. “Skip” McCormick
(III), Thomas J. Mowbray. Anti-

Patterns: Refactoring Software, Archi-
tectures, and Projects in Crisis. Wiley,
1998.

12. Boulter, Mark. Smart Client Architec-
ture and Design Guide. Microsoft
Press, 2004.

13. Astels, David. Test Driven Develop-
ment: A Practical Guide. Prentice Hall,
2003.

14. Parnas, David Lorge, and Paul C.
Clements. “A Rational Design Process
and How to Fake It.” IEEE Trans-
actions on Software Engineering 12.2
(Feb. 1986): 251-257.

Notes
1. This is the third value statement from

the agile manifesto [6].
2. There are many different names for this

role depending on whether the project
is created for commercial or internal
use. The role name is not as important
as the function that it performs.

3. This is the second value statement
from the agile manifesto [6].

4. Class or method structure for the
high-level components can be generat-
ed from a shadow.

5. Entropy is the tendency for software
to become brittle and difficult to add
to or change over time.

6. This is the first value statement from
the agile manifesto [6].

7. This is the fourth value statement
from the agile manifesto [6].

About the Author

Granville “Randy”
Miller is the architect of
Microsoft’s agile soft-
ware development pro-
cess, Microsoft Solutions
Framework for Agile

Software Development. He has two
decades of experience in the commercial
software industry and has spoken at
many international events, including
XP200x, Conference On Object
Oriented Programming Systems,
Languages and Applications, Web
Services Edge, Software Development
West, Microsoft TechEd, and others. His
interests include software development
technology and agile software develop-
ment. Miller is author of “Advanced Use
Case Modeling” and “A Practical Guide
to Extreme Programming.”

Microsoft
randymil@microsoft.com



December 2005 www.stsc.hill.af.mil 13

Eliminating Embedded Software Defects 
Prior to Integration Test

Ted L. Bennett and Paul W. Wennberg 
Triakis Corporation

Research has shown that finding software faults early in the development cycle not only improves software assurance, but also
reduces software development expense and time. The root causes of the majority of embedded system software defects discov-
ered during hardware integration test have been attributed to errors in understanding and implementing requirements. The
independence that typically exists between the system and software development processes provides ample opportunity for the
introduction of these types of faults. This article shows a viable method of verifying object software using the same tests cre-
ated to verify the system design from which the software was developed. After passing the same tests used to verify the system
design, it can be said that the software has correctly implemented all of the known and tested system requirements. This
method enables the discovery of functional faults prior to the integration test phase of a project.

New, complex embedded systems are
quick to take advantage of the unre-

lenting pace of advancement in computer
hardware performance and capacity.
Along with the increase in hardware capa-
bility comes a considerably greater
increase in the functionality and complex-
ity of the software in control.

Unfortunately, the methods and tools
we use to develop and test systems and
software have not kept up with the trend.
This is evidenced by the number of soft-
ware faults that pass undetected into the
integration and operational phases of
contemporary projects.

This is of concern for two important
reasons. In the case of software in control
of safety – or mission-critical systems –
allowing a failure to pass undetected into
the operational phase of a project may put
lives and/or critical missions at risk. In all
cases, the more faults that pass undetected
into integration test and beyond, the more
the project will cost and the longer it will
take to complete.

This article presents a new, closed-
loop method of simulating and verifying
embedded system designs and their con-
trolling software in a pure, virtual system
integration laboratory environment. We
have demonstrated and validated this
method in a recently concluded research
effort sponsored by the NASA Office of
Safety and Mission Assurance under their
Software Assurance Research Program [1].
Our investigation showed the following:
1. A new method of specifying, execut-

ing, and verifying an entire system
design in a pure virtual environment.

2. How uninstrumented, embedded
object software can be verified in the
virtual system environment.

3. How the same tests used to verify the
system design may be used to verify
the controlling software.
It follows from item No. 3 that if the

software passes the same tests used to ver-
ify the system design then it correctly
implements the known and tested system
requirements. As a result, we now have a
viable means of discovering requirements-
induced software faults prior to the inte-
gration test phase of a project. This is sig-
nificant because it has been shown that
early discovery of faults reduces both
project cost and duration.

Root Causes of Software
Faults
The root causes of the majority of soft-
ware defects discovered in integration test
during the development of an embedded
system have been attributed to errors in
understanding and implementing require-
ments (see the sidebar “JPL Root-Cause
Analysis of Spacecraft Software Defects”
and Figure 1 on page 14). These may be
the system and/or the software require-
ments. We assert that this is largely a result
of the independence that exists between
the requirements development and the
software development processes.

The JPL report findings are echoed in
reports of numerous other researchers
such as Leveson [3, 4], Ellis [5],
Thompson [6], and others. Consider some
of the many avenues where requirements-
related problems might be introduced:
• Assumptions/ambiguities affecting

the interpretation of customer de-
scriptions of desired system behavior.

• The difficulty in fully understanding
the real-world environment in which
the system will interact.

• The difficulty in anticipating all of the
possible modes and states that the sys-
tem may encounter.

• The difficulty in thoroughly validating
and verifying requirements.

• Capturing accurate, unambiguous rep-
resentations of requirements in a writ-
ten document.

• Misinterpretation of system-level re-
quirements by software designers.

• The difficulty in verifying that the
design has correctly implemented the
requirements.
To compound the problem, we gener-

ally cannot know at the onset of a project
if we have accurately modeled the real-
world system behavior. As a project
advances, however, so does our under-
standing of the system. Additional faults
may be introduced when subsequent
refinements to the system model are not
adequately communicated to the software
development teams. To be more effective
at creating software with a high level of
assurance, not only must we reduce the
number of errors attributable to misun-
derstanding and misimplementing require-
ments, but we must also improve commu-
nication between and among the system
and implementation teams.

Shortcomings of Federated
Development Methods
Contemporary, embedded systems devel-
opment projects are typically conducted in
a federated manner. In other words, the
system and software development activi-
ties are conducted essentially independent
of each other. To illustrate this point,
Figure 2 on page 15 depicts the three prin-
cipal loops comprising a typical project
process. We will ignore hardware develop-
ment activities since they are not germane
to this discussion.

The first loop is where the system
design is created. The system designers
may make use of modeling, simulation,
prototyping, executable specifications
(ES), and other tools to satisfy the need to
validate control algorithms, component
interactions, etc. The system architects
validate and verify their design through
analysis, possibly tests, and possibly by
similarity with reused components. They



14 CROSSTALK The Journal of Defense Software Engineering December 2005

Total Creation of a Software Project

then document the requirements for the
implementation teams to follow. When
satisfied with their design (or when time
runs out), the system team delivers the
system specification package to the imple-
mentation teams.

Entering the second loop shown in
Figure 2, the software implementation
team interprets the relevant requirements
– whether written in natural language,
specification design language, or exe-
cutable specifications – derives software
requirements, and creates its design. The
software developers write their own tests
to verify conformance to the require-
ments as they have interpreted them.
They may use some form of simulation,
hardware development boards, inspec-
tion, analysis, or similarity comparison to
facilitate verification of their code.

When a major part of the system
functionality has been coded, the software
team creates a build. The software is
loaded into its target hardware where inte-
gration test begins in the laboratory.

Connected to test equipment, simulators,
and perhaps other system elements, the
control software is stimulated by the hard-
ware environment under the control of
custom test software. Bugs discovered
during integration test are filed as prob-
lem reports and passed back to the devel-
opment team to resolve, thereby complet-
ing the third loop.

We see the independence that exists
between the system and software loops in
this development process as the primary
reason for the propagation of software
faults into integration test. Further, this
independent process may breed duplicity
of effort where the software and system
teams write their own tests to verify the
same behavior at the system and software
levels.

Our research has shown a method of
connecting the system and software
development loops that allows tests writ-
ten for system verification to be used to
verify the software itself. This enables the
software to be thoroughly debugged in a

pure, virtual environment before it ever
gets to the hardware integration phase.

Coupling the System and
Software Development Loops
Figure 3 illustrates our approach to con-
necting the system and software develop-
ment loops. This new approach retains
the system and software development
loops, but eliminates the loop where the
hardware integration lab is used for soft-
ware debug activities.

As before, your project begins with
the development of a system design using
various tools for algorithm development,
etc. However, in lieu of passing the design
and requirements to the implementation
teams as a collection of disparate specifi-
cations, the entire system and the envi-
ronment in which it interacts is simulated
using a form of ES. All parts in the simu-
lation are bounded like their real-world
counterparts so the interface behavior of
each element can be correctly modeled
and specified. Parts are created with built-
in failure modes that may be activated
under test control.

Having modeled the behavior of the
entire system environment, you now have
a complete virtual system integration lab-
oratory (VSIL) in which to validate and
verify your system design. The next step is
to create a suite of tests based upon nom-
inal and off-nominal scenarios for which
the system has been designed to react.
Our testing philosophy is to exercise the
system by driving the environment as
realistically as possible, and monitoring
the system behavior in response. This is
generally not a viable approach for hard-
ware system integration laboratory setups
due to the cost or difficulty involved in
procuring, creating, and synchronously
controlling all the disparate pieces of
hardware and simulators necessary to
realistically drive the target system.

The completed and verified VSIL is
then passed, along with the system-level
tests and any supplemental written
requirements, to the development teams.
The teams create hardware and software
designs from the specified processing,
communication, interface, control, and
other requirements. As soon as the hard-
ware architecture has been established,
the target embedded controller for which
the software is being developed must be
simulated with sufficient fidelity to run
the unmodified object software. Because
the simulated controller hardware is
bounded (i.e., it has identical interfaces)
like the ES part from which it was devel-
oped, it may be plugged into the VSIL in

JPL Root-Cause Analysis of 
Spacecraft Software Defects

In 1992, Dr. Robyn Lutz conducted an
analysis for the Jet Propulsion Laboratory
(JPL) to determine the root causes of the
387 software defects discovered during the
integration test phase of the Voyager and
Galileo spacecraft development efforts.
The software controlling these spacecraft
is distributed among several embedded
computers with roughly 18,000 and 22,000
lines of source code, respectively. Lutz
reported that the programming faults dis-
covered on the two projects are distributed
as shown in Figure 1.

The fault classifications given in Figure
1 are defined as follows:
• Functional faults comprise the three subclasses listed below:

a. Operating faults: Omission of, or unnecessary operations. 
b. Conditional faults: Incorrect condition or limit values.
c. Behavioral faults: Incorrect behavior, not conforming to requirements.

• Interface faults are those related to interactions with other system components such
as transfer of data or control. 

• Internal faults are defined as coding faults internal to a software module.
The data show that 98 percent of the combined total software problems were clas-

sified as functional or interface faults that are directly attributable to errors in under-
standing and implementing requirements, and inadequate communication between
development teams. Only 2 percent were due to software module coding errors [2]. 
The conclusions of the JPL report point to the need for improved focus in the follow-
ing areas:
1. Interfaces between the software and the system domains.
2. Identification of safety-critical hazards early in the requirements analysis.
3. Use of formal (and unambiguous) specification techniques.
4. Promotion of informal communication among teams.
5. Keeping development and test teams apprised of changes to requirements.
6. Inclusion of requirements for defensive design.

2

Functional 

74%

Interface

24%

Internal 2%

37

7

3

130

26

13
3

1

50

10

5
1

10
2

1
5

1
1

0

50

100

150

200

250

Phase Defect Introduced

P
h
a
s
e

R
e
p
a
ir

e
d

Relative

Cost to

Repair

400
400400

40
400

0
0400

300

250

200

150

100

50

0

368

130

50

64

37

7
3

10

5

1

26
13

3
1

1

15
10

2
1

R
equir

em
ents

Phase Defect Introduced

P
h
a
s
e

R
e
p
a
ir
e
d

Operational

D
esig

n

Test

In
te

gra
tio

n

Integration

Test

Code

Design

Requirements

Relative

Cost to

Repair
33350350

C
ode

Figure 1: Fault Distribution



December 2005 www.stsc.hill.af.mil 15

place of its ES counterpart. We refer to
this controller hardware simulation part as
a detailed executable (DE) (see Figure 3).

The DE gives the software team the
ability to test the software it develops (see
Figure 3, step 1) in the VSIL (see Figure
3, steps 2-4). After replacing the con-
troller ES with the DE, the software
being developed may be compiled and
loaded into the DE at any time for testing
in the VSIL. All of the tests created to
verify the system design can be used,
without modification, for software verifi-
cation. Additional tests must be added to
verify that software has correctly imple-
mented lower-level requirements whose
detail has not been addressed at the sys-
tem level (e.g., built-in test, etc.).

After running the desired tests, the
software development team analyzes the
results and determines the cause of any
failures. The team then corrects any iden-
tified faults, recompiles the revised mod-
ules, and retests the build in the VSIL (see
Figure 3, steps 1-4). In practice, step 3 is
performed once since the DE becomes an
integral part of the VSIL following
replacement of its ES counterpart. The
VSIL is tightly coupled with the integrated
software development environment used
by the software team – thereby facilitating
the code/compile/load/verify process.

Some of the problems discovered may
require the attention of the system design-
ers. When this necessitates a system design
change, the VSIL is revised and tested and
redistributed to the software development
teams. In this manner, the software is
always developed and tested in the most
current system design – thereby eliminat-
ing the possibility of software problems
being introduced due to miscommunica-
tion of system design changes.

The software design/code/verify/
debug loop is repeatedly executed until
the final build passes all tests and until all
paths through the code have been exer-
cised in the VSIL. Thus, the software has
been thoroughly verified and is ready for
integration testing with the real flight
hardware.

It is worth noting that since the object
code itself is tested in the VSIL, the real-
time operating system (RTOS), any
reused/commercial off-the-shelf mod-
ules, and all newly developed software are
verified together in the virtual target envi-
ronment. The VSIL itself is a Microsoft
Windows-compatible application that
interfaces with standard integrated devel-
opment environment tools. A VSIL is as
easily used as a typical lab test setup (e.g.,
emulator, simulators, target hardware) and
readily distributed to all project develop-

ment personnel. Since the entire system
and environment are modeled in the
VSIL, modifications and refinements can
be coded, validated, verified, and distrib-
uted to the entire team. VSIL revisions
and verification tests may be controlled
using standard configuration manage-
ment tools and techniques. Lastly, the
VSIL is purely virtual: no hardware is
required other than the Windows-based
PC on which it runs.

Discussion
We have presented a new method of
embedded systems and software verifica-
tion and validation (V&V) that closes the
loop between system and software devel-
opment activities. In so doing, the system
and software development processes can
now be connected through common ver-
ification tests.

Finding and repairing software faults
early in the project development cycle can
lead to substantial savings (see the sidebar
“Economics of Fault Finding” on page
16). For example, requirements and com-
munication-induced errors like 98 percent
of those discovered during the integra-
tion phase of the Voyager and Galileo

spacecraft software projects, can be found
and repaired at one or perhaps more
orders of magnitude lower cost.

Implications
Below is a summary list of some of the
ways that the methods presented in this
article may be of economic benefit to
embedded software development:
1. Discover system errors early in the

development cycle where it is least
costly to correct them.

2. Reduce interpretation-induced soft-
ware faults due to ambiguities in sys-
tem requirements.

3. Improve ability for dynamic, non-
invasive test of system and software
response to failure conditions.

4. Reduce software faults caused by
breakdown in communication of sys-
tem requirements changes.

5. Utilize new capacity for empirical soft-
ware V&V in cases where analysis was
the only viable means, for example,
realistic fault injection and failure
mode testing, complex digital signal
processor designs, etc.

6. Provide a highly viable means of veri-
fying automatically generated code,

Eliminating Embedded Software Defects Prior to Integration Test

SYSTEM

Design/Analyze/Test

Model,

Simulate,

Prototype,

ES, etc.

Software

Interpretation

Requirements

Debug

Build

Integration

Test

Design/Analyze/Test

Hardware

Integration

Testing

CPU I/O

RAM

ROM

Test Resu lts

Build

Operational

Service

D E

Bug

Discovery

Simulation of

Embedded

Controller Hardware

Software Passes

All Tests in VSIL

3. Replace ES

Controller in

VSIL with DE

2. Load

Object

Software

4. Test

Software

in VSIL

Verify Design

Debug Code

System Team Delivers:

• ES-Based VSIL

• V&V Test Suite

1. Develop

Software

Figure 2: Federated Development Process

SYSTEM

Design/Analyze/Test

Model,

Simulate,

Prototype,

ES, etc.

Software

Interpretation

Requirements

Debug

Build

Integration

Test

Design/Analyze/Test

Hardware

Integration

Testing

CPU I/O

RAM

ROM

Test Resu lts

Build

Operational

Service

D E

Bug

Discovery

Simulation of

Embedded

Controller Hardware

Software Passes

All Tests in VSIL

3. Replace ES

Controller in

VSIL with DE

2. Load

Object

Software

4. Test

Software

in VSIL

Verify Design

Debug Code

System Team Delivers:

• ES-Based VSIL

• V&V Test Suite

1. Develop

Software

Figure 3: Closed-Loop Software Verification in Virtual System Integration Lab



Total Creation of a Software Project

reused software, and RTOS.
Creating a system design with the type

of ES discussed herein results in a verifi-
able system architecture that is readily
translated into component- and interface-
level designs. When contracting out the
development of subsystem software, the
system-level verification tests can provide
an excellent way to assure that the contrac-
tor has developed the software correctly.

Because ES parts may be created with
intrinsic failure modes that can be invoked
dynamically under test control, the system
designer can empirically verify the speci-
fied system response to a variety of off-

nominal conditions. This ability allows
greater latitude in the type and number of
tests that can be conducted when com-
pared with what is economically viable in
a hardware integration lab.

Verifying the VSIL
The VSIL is, in fact, a model of both the
system being developed and the environ-
ment in which it is designed to interact.
Before it can be of use, we must have con-
fidence that the VSIL represents its target
adequately.

We have adopted an effective
approach that is perhaps best described as

test as you go. As parts are simulated to
implement specific requirements, system-
level tests are created simultaneously to
verify that they behave correctly. Part
functionality may be developed and tested
incrementally as requirements are imple-
mented. At the end of this process, all
VSIL parts have been implemented and
verified and a basic set of system-level
tests has been developed.

Parts developed to a high fidelity level
may require a supplemental verification
activity where the real-world equivalent
part is used for comparison purposes. In
the case of developing an instruction-set-
level CPU simulation, we run test code
designed to verify instruction execution
on a hardware development board and
compare the results with the outcome of
running the same code on the simulated
part. The CPU parts we have developed
are not cycle-accurate but are refined to
where the instructions execute within an
average of 4 percent of the hardware per-
formance (works well for embedded soft-
ware verification). This is in keeping with
our philosophy of not implementing
greater fidelity than necessary.

VSIL Development Tool
Triakis developed its first avionics simula-
tor more than a decade ago to save time
verifying software modifications and to
avoid contention for lab test resources.
This initiative spawned the creation of
IcoSim, Triakis’ general-purpose simulator
development tool, and its companion
software developer’s kit (SDK).

The IcoSim SDK is typically available at
no cost to customers availing themselves of
Triakis' VSIL development services. In the
second quarter of 2006, however, Triakis
plans to make IcoSim freely available to the
general public by turning IcoSim into an
open source project1 whose use will be gov-
erned under a Lesser General Public
License (LGPL) [11]; simulated parts will
be covered individually under a LGPL,
GPL [12], or proprietary license.

Tool Description
Since it is destined to become an open
source project, the descriptive details
provided herein are intended to promote
an understanding of how we accomplish
what we have presented.

Written in C++ and C, IcoSim allows
the use of diverse part types ranging from
low to high abstraction levels. It also sup-
ports using mixed mode parts such as ana-
log, digital, mechanical, hydraulic, magnet-
ic, electromagnetic, et al.

IcoSim is well suited to creating a
VSIL for use in developing embedded

16 CROSSTALK The Journal of Defense Software Engineering December 2005

Economics of Fault Finding
Estimates of the cost to find and correct software faults at each of the principal stages
of a project have been publicized and widely referenced since 1976 when Boehm first
published his study [7] on the subject. Cost numbers vary depending on the type of
application for which the software is being developed, but the common thread they all
exhibit is the substantial increase in project costs caused by carrying problems from
one development stage to the next. 

A report released in May 2002 by the National Institute of Standards and Technol-
ogy (NIST) [8] contains a thorough analysis concluding that inadequate software testing
costs the United States an estimated $59.5 billion annually. The 309-page NIST report
is a well-considered treatise on the economic impact of inadequate software testing.

While these numbers are extrapolated from software developed for the financial
services and transportation applications (computer-aided design, computer-aided
manufacturing, etc.) sectors, the message applies even more significantly to industries
engaged in developing software for safety and mission-critical applications such as
aerospace, medical, defense, automotive, etc. Failures of safety/mission-critical soft-
ware may result in harm to, or loss of human life and/or mission objectives such as in
the case of the Therac-25 radiation overdose accidents [2] and the Ariane-5 maiden
launch failure [9]. The Therac-25 software caused severe radiation burns in numerous
cancer patients before it was implicated. The cost of allowing the Ariane-5 software
defect to pass into the operational phase has been estimated to be as high as $5 bil-
lion alone. 

NASA recently sponsored a study to evaluate the economic benefit of conducting
independent validation and verification during the development of safety-critical
embedded systems [10]. This study presented cost-to-repair figures focused specifi-
cally on embedded systems projects. Figure 4 shows the relative cost to repair factors
– considered to be conservative estimates for embedded systems – used in this study. 

The graph in Figure 4 tells us that an error introduced in the requirements phase
will cost five times more
to correct in the design
phase than in the phase
in which it was intro-
duced. Corresponding-
ly, it will cost 10 times
more to repair in the
code phase, 50 times
more in the test phase,
130 times more in the
integration phase, and
368 times more when
repaired during the
operational phase. The
graph also gives the
cost multipliers for prob-
lems introduced in the
design, code, test, and
integration phases of
the development cycle.

2

Functional 

74%

Interface

24%

Internal 2%

37

7

3

130

26

13
3

1

50

10

5
1

10
2

1
5

1
1

0

50

100

150

200

250

Phase Defect Introduced

P
h
a
s
e

R
e
p
a
ir

e
d

Relative

Cost to

Repair

400
400400

40
400

0
0400

300

250

200

150

100

50

0

368

130

50

64

37

7
3

10

5

1

26
13

3
1

1

15
10

2
1

R
eq

u
ir
em

en
ts

Phase Defect Introduced

P
h
a
s
e

R
e
p
a
ir
e
d

Operational

D
esig

n

Te
st

In
te

g
ra

ti
o
n

Integration

Test

Code

Design

Requirements

Relative

Cost to

Repair
33350350

C
o
d
e

Figure 4: Relative Cost of Software Fault Propagation



December 2005 www.stsc.hill.af.mil 17

Eliminating Embedded Software Defects Prior to Integration Test

systems and software because the simu-
lated parts may be bounded exactly like
their real-world counterparts. In other
words, the inputs and outputs of each
virtual part are readily modeled after the
behavior of their real-world part’s digital,
analog, mechanical, etc. input/output.
Once its behavior is verified, a virtual
part may be identified with the same part
number as its counterpart, and repeated-
ly used wherever system designs specify.

VSIL Parts Libraries
In addition to the NASA research that val-
idated the methodology presented, IcoSim
has been used to create VSILs for soft-
ware verification on more than two dozen
avionics projects over the past decade. It is
scalable to any size system and has been
used for verification of software in single
and dual-redundant avionics systems rang-
ing in criticality from Radio Technical
Commission for Aeronautics, Inc.
(RTCA) Defense Order (DO)-178B2, level
A (safety-critical) to level D (low criticali-
ty). It has also been used for verification
of embedded digital signal processor
(DSP) software implementing Kalman fil-
ter algorithms.

Triakis’ parts library includes instruc-
tion-set-level simulations of many micro-
processors in use today such as the
MPC555, MPC750, RAD6000, MC68000,
MC68332, DSP56005, DSP56302,
DSP56309, I80196, I8051, I8096, I8097,
I8798, et al. Numerous additional periph-
eral and glue parts are in the library as well
as a host of actuators and sensors that
have been created in support of various
VSIL projects. Triakis has also created a
collection of parts that simulate many dif-
ferent data buses and protocols, e.g.,
Aeronautical Radio, Inc. (ARINC) 419;
ARINC 739; Military-Standard-1553;
Time-Triggered Protocol; Avionics Stan-
dard Communication Bus; Commercial
Standard Data Bus; Avionics Full-Duplex
Switched Ethernet; Serial Peripheral
Interface; Peripheral Component Inter-
connect, Controller Area Network, etc.

To support testing with a VSIL, we
have simulated standard laboratory test
equipment such as oscilloscopes, signal
generators, and the functional capability of
microprocessor emulators. The VSIL is an
ideal environment for gathering dynamic
software metrics without instrumenting
either the target operating system or the
software. Code path coverage, Modified
Code Decision Coverage reports, through-
put analysis, timing analysis, and many
other helpful reports are readily produced
in this environment with the addition of
instructions to the test script.

Costs of VSIL Development
A VSIL is made by interconnecting
objects at the lowest level of abstraction
to make successively higher levels of
functional parts until the required envi-
ronment is complete. This hierarchical,
modular approach maximizes the poten-
tial for part reuse on subsequent develop-
ment projects.

To be efficient at making a VSIL, each
part is simulated only to the level of fideli-
ty necessary to achieve one’s goals. For
example, an aircraft rudder is attached to a
sensor that reports its angular position to
avionics subsystems as required. The sen-
sor has a mechanical link to the rudder,
has inertial properties, may have inductive
coils, may have an armature, may be excit-
ed by a 400 Hz reference, etc.

While we could model all of these
characteristics with great precision, it
would be a waste of effort if our system
only required the correct transfer func-
tion of rudder angle to sensor output at a
given update rate. Since part fidelity is
directly proportional to effort, being
selective about where to incorporate
higher fidelity is key to cost-effective
VSIL creation.

It is difficult to quantify the costs of
creating a VSIL for system and software
development because of the large number
of variables involved such as the following:
• System size.
• System complexity.
• Number of parts to be simulated.
• Number of control processing units

to be simulated.
• Experience of simulation engineer(s).

Because of the part-oriented nature
of the VSIL, the cost of creating a simu-
lator for a given project will vary in pro-
portion to the number and complexity of
new parts that must be created. Many

new, embedded designs reuse proven
design elements from prior projects so
the cost of developing simulators dimin-
ishes with successive applications.

Supplemental VSIL Benefits
The benefit of using a VSIL for embed-
ded systems and software development
increases with project size, system com-
plexity, and geographic diversity of organ-
izations and personnel contributing to the
project.

In addition to the cost benefits of early
software fault discovery, a VSIL can support
a project in other important ways. Some of
these benefits are directly measurable, but
others may have less tangible value:
• When contracting out development of

a subsystem, supplying the vendor
with a VSIL and its system test suite
can be a highly effective means of ver-
ifying that the software conforms to
the requirements.

• Development teams in local and
remote locations can quickly re-verify
their software following system revi-
sions that have been implemented and
tested in a VSIL. Using standard con-
figuration control procedures, the lat-
est system revision can be distributed
to all teams as soon as it is available.

• Providing a VSIL to every program-
mer promotes a broader, big-picture
understanding of the system. Every
programmer tests on the whole sys-
tem, every time.

• Testing in a VSIL reduces the depend-
ence on laboratory test stations; con-
sequently, fewer are required.

• Less dependence on laboratory test
equipment reduces resource-con-
tention delays during development.

• A VSIL may be helpful in the opera-
tional phase of a project for the fol-
lowing:
o Software re-verification following

upgrade modifications with full
regression testing.

o Re-verifying software on obsoles-
cent-driven hardware design
changes.

o Verification of system compatibil-
ity with upgrades to peripheral or
subsystem units.

o Eliminating or reducing reliance
on test equipment setups that must
be maintained to support software
changes following entry into serv-
ice.

While not a rigorous analysis, one
avionics company’s post-project review of
having used a VSIL for verification of
their dual-redundant avionics software
revealed some attractive cost-benefits.

“There are many factors
that influence the cost,

but a typical VSIL
[virtual system

integration laboratory]
can be developed

for about 5 percent
to 10 percent of the
overall project cost.”



Total Creation of a Software Project

18 CROSSTALK The Journal of Defense Software Engineering December 2005

Based on their findings they concluded
that future projects could expect a 24 per-
cent schedule savings, a $130,000 direct
savings on laboratory equipment, and real-
ize an overall cost savings of 14 percent
on an average $4.5-million project. These
estimates do not take into account the
benefits afforded by a VSIL throughout
the operational life of a product. There
are many factors that influence the cost,
but a typical VSIL can be developed for
about 5 percent to 10 percent of the over-
all project cost. This places the return on
investment in the range of 40 percent to
180 percent for the above project.

Experiences will no doubt vary from
project to project; however, these esti-
mates can provide useful guidance when
assessing the life-cycle cost/benefit of
using a VSIL for development.

Summary
The new method of embedded systems
and software V&V presented here goes
far beyond an incremental improvement
to the status quo. While not a panacea, it
does provide a cost-effective, proven
means of the following:
• Ensuring that the target software has

implemented all known and tested sys-
tem requirements – prior to hardware
integration.

• Verifying automatically generated
code, reused software, and the RTOS.

• Verifying response of systems and
software to a wide range of realistic,
dynamic failures and off-nominal sce-
narios.

• Re-verifying software following system
revisions and updates.

• Ensuring that hardware redesigned for
obsolescence is compatible with the
software.

• Verifying that new and upgraded
peripherals and subsystems function
correctly with the target system.
The approach described provides a

bridge between algorithm and model
development tools, and the real-world sys-
tem environment in which embedded
algorithms must function. This method is
a highly viable way to address a number of
problems that hamper efficient embedded
systems and software development.u

References
1. Bennett, T.L., P.W. Wennberg. “The

Use of a Virtual System Simulator and
Executable Specifications to Enhance
Software Validation, Verification, and
Safety Assurance – Final Report.”
Software Assurance Research Program
Results Web Site. Fairmont, West
Virginia : NASA IV&V Facility, June

2004. <http://sarpresults.ivv.nasa.
gov/ViewResearch/285/32.jsp>.

2. Lutz, R.R. “Analyzing Software Errors
in Safety-Critical, Embedded Sys-
tems.” Pasadena, CA: Jet Propulsion
Laboratory, California Institute of
Technology, 1994.

3. Leveson, N.G. Safeware – System,
Safety, and Computers. Addison-
Wesley, 1995.

4. Leveson, N.G. “Software Safety: What,
Why, and How.” ACM Computing
Surveys 18.2 (1986).

5. Ellis, A. Achieving Safety in Complex
Control Systems. Proc. of the Safety-
Critical Systems Symposium. Brighton,
England: Springer-Verlag, 1995: 2-14.

6. Thompson, J.M. “A Framework for
Static Analysis and Simulation of
System-Level Inter-Component Com-
munication.” Masters Thesis. Univer-
sity of Minnesota, 1999.

7. Boehm, B.W. “Software Engineering.”
IEEE Transactions on Computer 1.4
(1976): 1226-1241.

8. Tassey, G. “The Economic Impacts of
Inadequate Infrastructure for Software
Testing.” National Institute of Stan-
dards and Technology, 2002 <www.
nist.gov/director/progofc/report

02-3.pdf>.
9. Leveson, N.G. “The Role of Software

in Spacecraft Accidents.” AIAA
Journal of Spacecraft and Rockets 41.4
(July 2004).

10. Dabney, J.B. “Return on Investment of
Independent Verification and Vali-
dation Study Preliminary Phase 2B
Report.” Fairmont, W.V.: NASA
IV&V Facility, 2003. <http://sarp
results.ivv.nasa.gov/ViewResearch/28
9/24.jsp>.

11. GNU Lesser General Public License.
Vers. 2.1. Boston, MA: Free Software
Foundation, Inc., 1999 <www.open
source.org/licenses/lgpl-license.
php>.

12. Open Source. The General Public
License (GPL). Vers. 2. Boston, MA:
Free Software Foundation, Inc., 1991
<www.opensource.org/licenses/
lgpl-license.php>.

Notes
1. Details about open-source projects

can be found at <http://sourceforge.
net/>.

2. Information about DO-178B can be
found at <www.software.org/quagmire/
descriptions/-178b.asp>.

About the Authors

Ted L. Bennett is di-
rector of Systems En-
gineering and Business
Development at Triakis
Corporation. He has
more than 25 years

experience in embedded hardware and
software design, systems engineering,
project management, and business
development in the aerospace industry.
Bennett was principal investigator for
the NASA-sponsored research project
that validated the breakthrough
methodology presented in this article.
He is also principal investigator on two
additional NASA research grants cur-
rently being conducted by Triakis. He
has a Bachelor of Science in electrical
engineering from the University of
Wisconsin at Madison.

Triakis Corporation
16149 Redmond WY STE 177
Redmond,WA 98052
Phone: (425) 558-4241
Fax: (425) 558-7650
E-mail: ted.bennett@triakis.com

Paul W. Wennberg is
president and founder
of Triakis Corporation
and conceived and cre-
ated IcoSim, the pure
virtual environment sim-

ulator tool discussed in this article. He
has over 20 years experience in the
design and test of embedded systems
hardware and software, and pioneered
this new methodology. A U.S. Air
Force veteran, Wennberg logged over
1,400 hours piloting T38 and KC135
aircraft prior to completing his service
with the rank of captain. He has a
Bachelor of Science in electrical engi-
neering from the University of
Washington at Seattle.

Triakis Corporation
16149 Redmond WY STE 177
Redmond, WA 98052
Phone: (425) 861-3860
Fax: (425) 558-7650
E-mail: paul.wennberg@

triakis.com



In today’s software marketplace, the
principal focus is on cost, schedule, and

function; quality is lost in the noise. This is
unfortunate since poor quality perform-
ance is the root cause of most software
cost and schedule problems. However, as
this article points out, there are proven
ways to address this problem. The first
step is adopting and demanding that ven-
dors follow these six principles of soft-
ware quality:
• Quality Principle No. 1: If a cus-

tomer does not demand a quality prod-
uct, he or she will probably not get
one.

• Quality Principle No. 2: To consis-
tently produce quality products, the
developers must manage the quality of
their work.

• Quality Principle No. 3: To manage
product quality, the developers must
measure quality.

• Quality Principle No. 4: The quality
of a product is determined by the
quality of the process used to develop
it.

• Quality Principle No. 5: Since a test
removes only a fraction of a product’s
defects, to get a quality product out of
test you must put a quality product
into test.

• Quality Principle No. 6: Quality
products are only produced by moti-
vated professionals who take pride in
their work.
These are not just theoretical princi-

ples, and almost any software group can
follow them, as demonstrated by the expe-
riences of many organizations with the
Software Engineering Institute’s (SEISM)
Team Software ProcessSM (TSPSM). All it
takes to start down this road is to recog-
nize and act on quality principle No. 1.

Quality Principle No. 1
If the customer does not demand a quality
product, he or she will probably not get one.

If you want quality products, you must
demand them. But how do you do that?
That is the subject of this article. I first

define quality, then I discuss quality man-
agement, and then third, I cover quality
measurement. Next I describe the meth-
ods for verifying the quality of software
products before you get them, and finally,
I give some pointers for those acquisition
managers who would like to consider
using these methods. That, of course, is
the most critical point; even when you
demand quality, if you cannot determine
that you will get a quality product before
you get it, you are no better off than you
are today – struggling to recover from the
effects of getting poor-quality products.

Defining Quality
Product developers typically define a qual-
ity product as one that satisfies the cus-
tomer. However, this definition is not of
much help to you, the customer. What you
need is a definition of quality to guide
your acquisition process. To get this, you
must define what quality means to you and
how you would recognize a quality prod-
uct if you got one.

In the broadest sense, a quality prod-
uct is one that is delivered on time, costs
what it was committed to cost, and flaw-
lessly performs all of its intended func-
tions. While the first two of these criteria
are relatively easy to determine, the third is
not. These first two criteria are part of the
normal procurement process and typically
receive the bulk of the customer’s and
supplier’s attention during a procurement
cycle, but the third is generally the source

of most acquisition problems. This is
because poor product quality is often the
reason for a software-intensive system’s
cost and schedule problems.

Think of it this way: If quality did not
matter, you would have to accept whatev-
er quality the supplier provided, and the
cost and schedule would be largely deter-
mined by the supplier. In simplistic terms,
the supplier’s strategy would be to supply
whatever quality level he felt would get the
product accepted and paid for. In fact,
even if you had contracted for a specific
quality level, as long as you could not ver-
ify that quality level prior to delivery and
acceptance testing, the supplier’s optimum
strategy would be to deliver whatever
quality level it could get away with as long
as it was paid.

Since, at least for software, most qual-
ity problems do not show up until well
after the end of the normal acquisition
cycle, you would be no better off than
before. I do not mean to imply that this is
how most suppliers behave, but merely
that this would be its most economically
attractive short-term strategy. In the long
term, quality work has always proven to be
most economically attractive.

Addressing the Quality
Problem
In principle, there are only two ways to
address the software quality problem.
First, use a supplier that has a sufficiently
good record of delivering quality products
so you will be comfortable that the prod-
ucts he provides will be of high quality.
Then, just leave the supplier alone to do
the development work. The second choice
would be to closely monitor the develop-
ment process the supplier uses to be
assured that the product being produced
will be of the desired quality.

While the first approach would be
ideal, and that is the principle behind the
successful Capability Maturity Model®

Integration evaluation strategy, it is not
useful when the supplier has historically
had quality problems or where his current
performance causes concern. In these

Acquiring Quality Software
Watts S. Humphrey

Software Engineering Institute

If you do not insist on getting quality software, you probably will not get it! That is the first principle of software quality. To
get quality software at reasonable costs and on predictable schedules, you must follow the six principles of software quality.
This article describes these principles and discusses how to apply them in software acquisition.

December 2005 www.stsc.hill.af.mil 19

Best Practices

“In the broadest sense, a
quality product is one

that is delivered on time,
costs what it was

committed to cost, and
flawlessly performs all of
its intended functions.”

SM SEI is a service mark of Carnegie Mellon University.



Best Practices

cases, you are left with the second choice:
to monitor the development work. To do
this, you must consider the second princi-
ple of quality management.

Quality Principle No. 2
To produce quality products consistently,
developers must manage the quality of
their work.

Managing Product Quality
While you may want a quality product, if
you have no way to determine the prod-
uct’s quality until after you get it, you will
not be able to pressure the supplier to do
quality work until it is too late. The best
time to influence the product’s quality is
early in its development cycle where you
can determine the quality of the product
before it is delivered and influence the way
the work is done. At least you can do this
if your contract provides you the needed
leverage.

This, of course, means that you must
anticipate the product’s quality before it is
delivered, and you must also know what to
tell the supplier to do to assure that the
delivered product will actually be of high
quality. Therefore, the first need is to pre-
dict the product’s quality before it is built.
This is essential, for if you only measure
the product’s quality after it has been built,
it is too late to do anything but fix its
defects. This results in a defective product
with patches for the known defects.
Unless you have an extraordinarily effec-
tive test and evaluation system, you will
not then know about most of the prod-
uct’s defects before you accept the prod-
uct and pay the supplier.

While you might still have warranties
and other contract provisions to help you
recover damages, and you might still be
able to require the supplier to fix the prod-
uct’s defects, these contractual provisions
cannot protect you from getting a poor
quality product. Because most suppliers
are adept at avoiding liability for defects,
you have not gained very much by con-
tracting for quality. To get the benefits of
including quality provisions in your con-
tracts, you must determine the likely qual-
ity of the product during development.

Identifying Quality Work
To determine the likely quality of a prod-
uct while it is being developed, we must
consider the third principle of quality
work.

Quality Principle No. 3
To manage product quality, the developers
must measure quality.

To monitor product quality before

delivery you must measure quality during
development. Further, you must require
that the developers gather quality meas-
urements and supply them to you while
they do the development work. What
measures do you want, and how would
you use them? This article suggests a
proven set of quality measures, but first,
to define these measures, we must consid-
er what a quality product looks like.

While software experts debate this
point, every other field of engineering
agrees on one basic characteristic of qual-
ity: A quality product contains few, if any,
defects. In fact, the SEI has shown that
this definition is equally true for software.
We also know that software professionals
who consistently produce defect-free or
near defect-free products are proud of
their work and that they strive to remove
all the product’s defects before they begin
testing. Low defect content is one of the
principal criteria the SEI uses for identify-
ing the quality of software products.

Defining Process Quality
To define the needed quality measures, we
must consider the fourth quality principle.

Quality Principle No. 4
The quality of a product is determined by
the quality of the process used to develop
it.

This implies that to manage product
quality, we must manage the quality of the
process used to develop that product. If a
quality product has few if any defects, that
means that a quality process must produce
products having few if any defects. What
kind of process would consistently pro-
duce products with few if any defects?
Some argue that extensive testing is the
only way to produce quality software, and
others believe that extensive reviews and
inspections are the answer. No single
defect-removal method can be relied upon
to produce high-quality software products.
A high-quality process must use a broad
spectrum of quality management meth-
ods. Examples are many kinds of testing,
team inspections, personal design and
code reviews, design analysis, defect track-
ing and analysis, and defect prevention.

One indicator of the quality of a
process is the completeness of the defect
management methods it employs.
However, because the methods could be
applied with varying effectiveness, a sim-
ple listing of the methods is not sufficient.
So, given two processes that use similar
defect-removal methods, how could you
tell which one would produce the highest
quality products? To determine this, you
must determine how well these defect-

removal methods were applied. That takes
measurement and analysis.

The Filter View of
Defect-Removal
This leads us to the next quality principle.

Quality Principle No. 5
Since a test removes only a fraction of a
product’s defects, to get a quality product
out of test, you must put a quality product
into test.

This principle also applies to every
defect-removal method, from reviews and
inspections, through all the tests and other
quality verification methods. Every defect-
removal method only removes a fraction
of the defects in the product; so to under-
stand the quality of a development
process, you must understand the effec-
tiveness of the defect-removal methods
that were used. Further, to predict the
quality of the delivered product, you must
measure the effectiveness of every defect-
removal step.

This also means that the highest quali-
ty development process would be the one
that removed the highest percentage of
the product’s defects early in the process
and then had the lowest number of
defects in final testing. Finally, this means
that the highest-quality products are those
with the fewest defects on entry into the
final stage of testing.

Criteria for a Quality Process
To evaluate a process, you must measure
that process and then compare the meas-
ures with your criteria for a quality
process. This means that you must have
criteria that define what a quality process
looks like. From the filter view of defect
removal shown in Figure 1, we see that
defect removal is like removing impurities
from water [1]. To get water that is pure
enough to drink, we should find progres-
sively fewer impurities in each successive
filtration step. Finally, if we were going to
actually drink the water ourselves, we
would not want to find any impurities in
the final filtration step.

In effect, this means that the last filtra-
tion step is really used to verify the quality
of the water produced by the prior stages.
If there were any significant impurities,
you would want to put that water through
the entire filtration process again, starting
from the very beginning. Then you might
be willing to take a drink. Similarly, for a
software system, this suggests three quali-
ty criteria.
1. Most of the defects must be found

early in the development process.

20 CROSSTALK The Journal of Defense Software Engineering December 2005



Acquiring Quality Software

2. Toward the end of the process, fewer
defects should be found in each suc-
cessive filtration stage.

3. The number of defects found in the
final process stages must be fewer than
some predefined minimum.

Determining Process Quality
While these sound like appropriate
process-quality criteria, they have one
major failing – you will not have complete
defect data until the end of the process
after the product has been built, tested,
accepted, and used. During the process
you will only know the number of defects
found so far and not the number to be
found in future stages. This is a problem
because a low number of defects in a
defect-removal stage could be because the
product was of high quality, because the
defect-removal stage was improperly per-
formed, or because the defect data on that
stage were incomplete. This means that
you must have multiple ways to determine
the effectiveness of a defect-removal stage
and that these ways must include at least
one way to evaluate the effectiveness of
that stage at the time that it is actually
enacted. Partial defect data can be used to
do that. In fact, without these data, there
is no way to determine the effectiveness of
the defect-removal stages.

The three things we can measure
about a process stage are: (1) the time the
developers spent in that stage, (2) the
number of defects removed in that stage,
and (3) the size of the product produced
by that stage. Then, using historical data,
you could compare the data for any type
of defect removal stage with like data for
similar stages from previously completed
projects. As long as you had comparable
data for completed projects, you could see
what an effective review, inspection, or
test looks like. You could then determine
the quality of each stage of the current
project and either agree that the supplier
proceed or repeat some prior phases until
the quality criteria were met.

In-Process Quality Measures
From data on 3,240 Personal Software
ProcessSM (PSPSM) exercise programs writ-
ten by experienced software developers,
the SEI has determined the characteristics
of a high-quality software process [1].
These data are shown in Table 1, and they
show that developers inject about 2.0
defects per hour during detailed design
and find about 3.3 defects per hour during
detail-level-design reviews (DLDR).

To find the defects injected in one
hour of design work, the average develop-
er would have to spend 60*2/3.3 = 36

minutes reviewing that design. Similarly,
since developers inject an average of
about 4.6 defects per hour during coding
and find about 6.0 defects per hour in
code reviews, this same average developer
should spend about 60*4.6/6 = 46 min-
utes reviewing the code produced in each
hour. Since there is considerable variation
among developers, the SEI has established
the general guideline that developers per-
sonally spend at least half as much time
reviewing design or code quality as they
spent producing that design or code.

Further, from data on many programs,
we have found that, when there are fewer
than 10 defects found while compiling
each 1,000 lines of code and fewer than
5.0 defects found while unit testing each
1,000 lines of code, that program is likely
to have few if any remaining defects [2].
Combining these criteria with an addition-
al requirement that developers spend at
least as much time designing a program as
they spent coding it, gives the following
five software process quality criteria [1].

Calculating the Quality Profile
The quality profile has five terms that are
derived from the data shown in Table 1.
The equations for these terms are as fol-
lows.
1. Design/Code Time = Minimum(de-

sign time/coding time: 1.0).
2. Design Review Time = Minimum(2*

design review time/design time: 1.0).
3. Code Review Time = Minimum(2*

code review time/coding time: 1.0).
4. Compile Defects/KLOC = Minimum

(20/(10 + compile defects/KLOC):
1.0).

5. Unit Test Defects/KLOC = Minimum
(10/(5 + unit test defects/KLOC):
1.0).
To derive the five profile terms, con-

sider formula No. 3 for code reviews.
According to Table 1, in one hour of cod-
ing, a typical software developer will inject
4.6 defects. Since this developer can find
and fix defects at the rate of 6.0 per hour,
he or she needs to spend 4.6/6.0 = 0.7667
of an hour, or about 46 minutes, review-
ing the code produced in one hour. Since
there is wide variation in these injection
and removal rates, and since the number
0.7667 is hard to remember, the SEI uses
0.5 as the factor. Based on experience to

date, this has proven to be suitable. Since
these parameter values are sensitive to
application type and operational criticality,
we suggest that organizations periodically
analyze their own data and adjust these
values accordingly.

The formula for the code review pro-
file term compares the ratio of the actual
time the developer spent reviewing code
with the actual time spent in coding. If
that ratio equals or is greater than 0.5, then
the criteria are met. The factor of 2 in the
equation is used to double both sides of
this equation so it compares twice the
ratio of review to coding time with 1.0.
Also, to get a useful quality figure of
merit, we need a measure that varies
between 0 and 1.0, where 0 is very poor
and 1.0 is good. Therefore, the equation’s
value should equal 1.0 whenever 2 times
the code review time is equal to or greater
than the coding time and be progressively
less with lower reviewing times. This is the
reason for the Minimum function in each
equation, where Minimum(A:B) is the
minimum of A and B. A little calculation
will show that this is precisely the way
equation No. 3 works. Equations No. 1
and No. 2 work in exactly the same way
(except design time should equal or exceed
coding time in equation No. 1).

To produce equations No. 4 and No. 5,
the SEI used data it has gathered while
training software developers for TSP

December 2005 www.stsc.hill.af.mil 21

ering Process

 

Table 1. Defect Injection and Removal Rates (3,240 PSP Programs) 
 
Phase Hours Defects Injected Defects Removed Defects/Hour 
Design  4,623.6  9,302  
DLDR  1,452.7  4,824 
Code   4,159.6 19,296  
Code Review     1,780.4  10,758 

Figure 2: Process Quality Profile (Six Programs) 

PQI = 0.97 PQI = 0.88 PQI = 0.71

PQI = 0.59 PQI = 0.15 P

Test defects = 0 Test defects = 0 Test defects = 0

Test defects = 0 Test defects = 1 Test defects = 3

Quality Profile for Assembly 1

Design
Review
Time

Code
Review
Time

Design/Code Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

 1
0.8
0.6
0.4
0.2
 0

Quality Profile for Assembly 2

Design/Code Time

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

Q

1
0.8
0.6
0.4
0.2
 0

Quality Profile for Assembly 4

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

Quality Profile for Assembly 5

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

D

Phase
Yield

Defect
Removal

Phase

Development
Injects
Defects

Defect
Injection

Phase

Development
Injects
Defects

Phase
Yield

Phase
Yield

Development
Injects
Defects

%

%

%

Process
Yield

%

Figure 1: The Defect-Removal Filtering Process

ering Process

 

Table 1. Defect Injection and Removal Rates (3,240 PSP Programs) 
 
Phase Hours Defects Injected Defects Removed Defects/Hour 
Design  4,623.6  9,302  2.0 
DLDR  1,452.7  4,824 3.3 
Code   4,159.6 19,296  4.6 
Code Review     1,780.4  10,758 6.0 

Test defects = 0 Test defects = 0 Test defects = 0

T

Quality Profile for Assembly 1

D

Quality Profile for Assembly 2

D

Quality Profile for Assembly 3

 

Phase
Yield

Defect
Removal

Phase

Development
Injects
Defects

Defect
Injection

Phase

Development
Injects
Defects

Phase
Yield

Phase
Yield

Development
Injects
Defects

%

%

%

Process
Yield

%

Table 1: Defect Injection and Removal Rates (3,240 PSP Programs)



Best Practices

teams. It found that when more than
about 10 defects/thousand lines of code
(KLOC) were found in compiling, pro-
grams typically had poor code quality in
testing, and when more than about five
defects/KLOC were found in initial (or
unit) testing, program quality was often
poor in integration and system testing.
Therefore, we seek an equation that will
produce a value of 1.0 when fewer than 10
defects/KLOC are found in compiling,
and we want this value to progressively
decrease as more defects are found. A lit-
tle calculation will show that this is pre-
cisely what equation No. 4 does. Equation
No. 5 works the same way for the value of
five defects/KLOC in unit testing.

One of the great advantages of these
five criteria is that they can be determined
at the time that process step is performed.
Therefore, at the end of the design review
for example, the developer can tell if he or
she has met the design-review quality cri-
teria. By plotting these five values on radar
charts like those shown in Figure 2, it is
relatively easy to identify a program’s qual-
ity problems. The evaluation of these six
profiles is as follows:
1. An excellent quality profile.
2. A similarly excellent quality profile.
3. A generally good quality profile with

slightly too little design review time.
4. The design review measure is low, indi-

cating potential problems that should
be corrected with a repeated design
review.

5. This product has a serious design
review problem coupled with a unit
testing problem. It should be re-
inspected. This product, when later
tested had one defect found in final
testing.

6. This product has serious design prob-
lems and an inadequate code review
and should be replaced. This product

had three defects found in subsequent
testing.
Since these measures can all be avail-

able before integration and system test
entry, and since they can be calculated for
every component part of a large system,
they provide the information needed to
correct quality problems well before prod-
uct delivery.

The Process Quality Index
For large products, it is customary to com-
bine the data for all components into a
composite system quality profile. Since the
data for a few poor quality components
could then be masked by the data for a
large number of high quality components,
it is important to have a way to identify
any potentially defective system compo-
nents. The process quality index (PQI)
was devised for this purpose. It is calculat-
ed by multiplying together the five com-
ponents of the quality profile to give a
value between 0.0 and 1.0. Then the com-
ponents with PQI values below some
threshold can be quickly identified and
reviewed to see which ones should be re-
inspected, reworked, or replaced.

Experience to date shows that, with
PQI values above about 0.4, components
typically have no defects found after
development. Since the quality problems
for large systems are normally caused by a
relatively small number of defective com-
ponents, the PQI measure permits acqui-
sition groups to rapidly pinpoint the likely
troublesome components and to require
they be repaired or replaced prior to deliv-
ery. Once organizations have sufficient
data, they should reexamine these criteria
values and make appropriate adjustments.

Doing Quality Work
Since few software development groups
currently gather the data required to use

modern software quality management
practices, we must consider the sixth prin-
ciple of software quality.

Quality Principle No. 6
Quality products are only produced by
motivated professionals who take pride in
the quality of their work.

Because the measures required for
quality management must be gathered by
the software professionals themselves,
these professionals must be motivated to
gather and use the needed data. If they are
not, they will either not gather the data or
the data will not be very accurate.
Experience shows that developers will
only be motivated to gather and use data
on their work if they use the data them-
selves, and if they believe that the prac-
tices required to consistently produce
quality software products will help them
do better work. Most developers who
have used the TSP believe these things,
but without proper training very few
developers will.

While these measures and quality prac-
tices are not difficult, they represent a sig-
nificant behavioral change for most prac-
ticing software professionals and their
management. There are, however, a grow-
ing number of professionals who do prac-
tice these methods, and the SEI now has
a program to transition these methods
into general practice [1]. The methodolo-
gy involved is the PSP, and to consistently
use the PSP methods on a project, devel-
opment groups must use the TSP. There is
now considerable experience with these
methods, and it shows that with proper
use TSP teams typically produce defect-
free or nearly defect-free products at or
very close to their committed costs and
schedules [2, 3, 4, 5].

Acquisition Pointers
Sound quality management is the key to
software quality; without appropriate qual-
ity measures, it is impossible to manage
the quality of a process or to predict the
quality of the products that process pro-
duces. The developers must gather and
analyze these data; they will not do this
unless they know how to gather and how
to use these data. This is why the sixth
quality principle is critically important.
Merely ordering the organization to pro-
vide the desired data will guarantee getting
lots of numbers that are unlikely to be
useful unless quality principle No. 6 is
met. This requires motivating develop-
ment management, and having develop-
ment management train and motivate the
developers in the needed quality measure-
ment and management practices.

22 CROSSTALK The Journal of Defense Software Engineering December 2005

Design  4,623.6  9,302  2.0 
DLDR  1,452.7  4,824 3.3 
Code   4,159.6 19,296  4.6 
Code Review     1,780.4  10,758 6.0 

Figure 2: Process Quality Profile (Six Programs) 

PQI = 0.97 PQI = 0.88 PQI = 0.71

PQI = 0.59 PQI = 0.15 PQI = 0.04

Test defects = 0 Test defects = 0 Test defects = 0

Test defects = 0 Test defects = 1 Test defects = 3

Quality Profile for Assembly 1

Design
Review
Time

Code
Review
Time

Design/Code Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

 1
0.8
0.6
0.4
0.2
 0

Quality Profile for Assembly 2

Design/Code Time

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

Quality Profile for Assembly 3

 1
0.8
0.6
0.4
0.2
 0

1
0.8
0.6
0.4
0.2
 0

Design/Code Time

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

Quality Profile for Assembly 4

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

Quality Profile for Assembly 5

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile 
Defects/KLOC

Quality Profile for Assembly 6

P

Figure 2: Process Quality Profile (Six Programs)



Acquiring Quality Software

Once the developers regularly gather,
analyze, and use these data, there only
remains the question of how acquisition
executives can get and use the data. This is
both a contracting and a customer-suppli-
er issue. Experience to date shows that
when the developers use the TSP, you
should have no trouble getting the
required data [2, 3, 4, 5, 6, 7, 8].

The specific data needed to measure
and manage software quality are the fol-
lowing:
1. The time spent in each phase of the

development process. These times
must be measured in minutes.

2. The number of defects found in each
defect-removal phase of the process,
including reviews, inspections, compil-
ing, and testing.

3. The sizes of the products produced by
each phase, typically in pages, database
elements, or lines of code.
Planned and actual values are needed

for these items, and these data should be
for the smallest modules and components
of the system. To establish and maintain
the required management and developer
motivation, these quality measurement
and management requirements must be
addressed both contractually and through
management negotiation.

Conclusions
Poor quality performance damages a soft-
ware development organization’s cost and
schedule performance and produces trou-
blesome products. For acquirers to have a
reasonable chance of changing the cost
and schedule performance of their soft-
ware vendors, they must demand effective
quality management. The six principles of
software quality reviewed in this article
should help them do this.

By following these six principles and
requiring suppliers to do so as well, you
can consistently obtain quality software-
intensive products at or very near to their
committed costs and schedules.u

References
1. Humphrey, Watts S. PSP: A Self-

Improvement Process for Software
Engineers. Reading, MA: Addison-
Wesley, 2005.

2. Grojean, Carol A. “Microsoft’s IT
Organization Uses PSP/TSP to
Achieve Engineering Excellence.”
CrossTalk Mar. 2005 <www.stsc.
hill.af.mil/crosstalk/2005/03/0503
Grojean.html>.

3. Davis, Noopur, and J. Mullaney.
“Team Software Process (TSP) in
Practice.” Technical Report CMU/
SEI-2003-TR-014. Pittsburgh, PA:

Software Engineering Institute, Sept.
2003.

4. Humphrey, Watts S. Winning with
Software: An Executive Strategy.
Reading, MA: Addison-Wesley, 2002.

5. Humphrey, Watts S. TSP: Leading a
Development Team. Reading, MA:
Addison-Wesley, 2006.

6. Rickets, Chris A. “A TSP Software
Maintenance Life Cycle.” CrossTalk
Mar. 2005 <www.stsc.hill.af.mil/cross
talk/2005/03/0503Rickets.html>.

7. Trechter, Ray, and Iraj Hirmanpour.
“Experiences With the TSP Technol-
ogy Insertion.” CrossTalk Mar.
2005 <www.stsc.hill.af.mil/crosstalk/
2005/03/0503Trechter.html>.

8. Tuma, David, and David Webb.
“Personal Earned Value: Why Projects
Using the Team Software Process
Consistently Meet Schedule Commit-
ments.” CrossTalk Mar. 2005
<www.stsc.hi l l .af.mil/crosstalk/
2005/03/0503Tuma.html>.

December 2005 www.stsc.hill.af.mil 23

About the Author

Watts S. Humphrey
joined the Software En-
gineering Institute (SEI)
of Carnegie Mellon Uni-
versity after retiring from
IBM in 1986. He estab-

lished the SEI’s Process Program and led
development of the Software Capability
Maturity Model®, the Personal Software
ProcessSM, and the Team Software
ProcessSM. During his 27 years with IBM,
he managed all of IBM’s commercial
software development and was vice pres-
ident of Technical Development. He is
an SEI Fellow, an Association for
Computing Machinery member, an
Institute of Electrical and Electronics
Engineers Fellow, and a past member of
the Malcolm Baldrige National Quality
Award Board of Examiners. He has
published several books and articles and
holds five patents. In a White House cer-
emony, the president recently awarded
him the National Medal of Technology.
He has graduate degrees in physics and
business administration.

Software Engineering Institute
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone: (412) 268-6379
Fax: (412) 268-5758
E-mail: watts@sei.cmu.edu

January 4-7
Hawaii International Conference

on System Sciences 
Kauai, HI

www.hicss.hawaii.edu/HICSS39/apa
home39.htm

January 8-10
IEEE Consumer Communications and

Networking Conference 
Las Vegas, NV

www.ieee-ccnc.org/ index.htm

January 8-11
Internet, Processing, Systems, and

Interdisciplinaries (IPSI) USA 2006 
Palo Alto, CA

www.internetconferences. net/
california2006/index.html

January 11-13
The 33rd Annual Symposium on

Principles of Programming Languages 
Charleston, SC

www.cs.princeton.edu/
~dpw/popl/06

February 6-9
Components for Military and Space

Electronics Conference and Expo 
Los Angeles, CA

www.cti-us.com/ucmsemain.htm

February 13-17
The Fifth International Conference on

COTS-Based Software Systems 
Orlando, FL

www.iccbss.org/2006

February 14-16
The International Association of Science

and Technology for Development
Conference on Software Engineering

Innsbruck, Austria
www.iasted.org/conferences/2006/

Innsbruck/se.htm

May 1-4, 2006
2006 Systems and Software 

Technology Conference 

Salt Lake City, UT
www.stc-online.org

COMING EVENTS



24 CROSSTALK The Journal of Defense Software Engineering December 2005

Many people stereotype software devel-
opers as emotionless individuals who

have more in common with their comput-
ers than with their fellow workers. One
thing brings out emotions in software
developers more than anything else:
requirements. Organizations try to estab-
lish defined processes for activities related
to software development, and to achieve
results that are fairly independent of vari-
ous parameters (i.e., people, location, time)
involved in accomplishing the desired
activity. Generally, a reasonable success is
assured from most of the processes with a
few exceptions. One such exception is
requirements management. This is because of
the role emotions play in the acceptance of
requirements. The effect of the emotional
response to requirements can make a major
impact on how software is developed.

Even after establishing a well-defined
process and adopting a tool for managing
requirements, it is often found that manag-
ing requirements is not enough. The main
reason for this is understood with three
human factors that generally affect the
quality of any work:
• The way people act (work).
• The way people think.
• The way people feel.

The first two factors are normally
noticed by project teams and are addressed
by identifying required tools and processes.
Tools and processes drive the actions and
thinking process involved in the different
phases of software development. They do
not take into account the way people feel.
Typically, there is no special attention given
to this third factor. It is not apparent how
many activities are directly affected by the
emotional response of the developers.
Most of the time, it is possible to achieve
good results by taking care of the first two
factors. However, even good results can be
affected by emotions.

Other processes are not as affected by
emotions; for example, consider configu-
ration management. Configuration man-
agement usually does not provide oppor-
tunities where different people can feel dif-
ferently about the handling of configura-

tion items. There is not much room for
different opinions to be formed in the way
configuration items are identified and con-
trolled. In general, configuration manage-
ment requires specific actions rather than
detailed consideration and analysis. As a
result, it is not subject to the effects of
emotions in the way that requirements
management can be. Only the first factor
mentioned above – the way in which peo-
ple act – is important here and the differ-
ences in this factor can be avoided by
defining a clear process for configuration
management. Once a process is defined,
the project team can just follow those
steps. The thinking and feeling factors will
come into play when considering how to
improve the configuration management
process.

The same is not true with requirements
management. For this process, the think-
ing and feeling cannot be avoided. A well-
defined process can only address so much,
because there is something that affects the
thoughts and feelings of the developers –
the requirements document. The very existence
of this particular document will have a
continuous effect on the thoughts and
feelings of the team members. The effect
of this document continues through the
life cycle regardless whether the document
changes frequently, whether it is baselined,
or whether it is maintained under a proper
version control mechanism.

It is okay that the requirements docu-
ment elicits emotions. A requirements
document should have the power to enable
the thoughts and feelings of the team
members. What is important is the direc-
tion this document takes the reactions of
the team members. It should help to bring
innovation and motivation among the
team members, rather than bringing irrita-
tion and frustration.

Studies about requirements documents
show that the requirements usually have
problems, including omissions, contradic-
tions, ambiguities, duplications, inaccura-
cies, too much design, and irrelevant infor-
mation. This may be true, but as far as the
project team is concerned the emotions

related to these issues are more serious
than the fact that the problems exist.
While processes may be in place to handle
the requirements, they do not matter as
much as the reactions of the developers.

It is easy to establish the physical trace-
ability from requirements to all the affect-
ed documents in the project. Tools help in
that task. However, the traceability from
the author’s intent to the final product
does not occur as easily. Tools cannot help
here. It is up to the relationship between
the author and the reader. That relation-
ship is a product of the respect the two
have for each other and for the require-
ments document.

Lack of Respect for the
Document
Almost everyone accepts the importance
of communication and the effect it has on
the human emotions and relations. If a day
starts with a good incident, its effect
remains the entire day. The same is true in
case of the opposite situation. If the first
incident of the day is bad, that effect
lingers the rest of the day.

The same rule applies to the require-
ments document. When you consider the
communication involved in a project,
everything starts with the requirements
document; the entire project depends on
this document.

It is not only essential for this docu-
ment to be clear and correct, but it should
also gain the respect of the project team. If
a requirement is clearly defined at this
point, it will be accepted and respected by
the software developers. If it is not, prob-
lems can ensue. Even something like a
small contradiction between different sec-
tions of the document can deteriorate the
respect for the document. This can be true
even if it is a small contradiction that may
not damage the clarity of the requirement
as a whole.

If the requirements are not clear, the
reader can start assuming things wherever
a little bit of ambiguity exists. People tend
to fill in the blanks. Often, they do not

Open Forum

Role of Human Emotions in 
Requirements Management

Sreevalli Radhika. T.
Robert Bosch India Ltd.

Requirements management is an area where satisfactory results are not seen even after establishing well-defined processes and
adopting good tools. This article looks at this problem from a totally different angle and finds facts that are normally not
observed. It discusses the effect of human emotions in requirements management.



December 2005 www.stsc.hill.af.mil 25

Role of Human Emotions in Requirements Management

even realize they are assuming things that
are not there. In such situations, software
developers will think they are capable of
understanding a poorly written document.
This reaction can cause problems down
the road as assumptions can diverge from
the original intent of the document.

A number of things can cause a lack of
respect for the document. These include
spelling mistakes, improper organization
of the contents, and redundant statements.
Authors may ignore small mistakes like the
wrong date or the wrong version number.
The readers will not. All of these items
add up. If the readers disrespect the docu-
ment, it can lead to frustration and anger.
It will affect the actions they take in devel-
oping the requirements.

Some of these points may not seem
important while preparing the document,
but they can actually pass an indirect mes-
sage to the reader about the document.
The author should always consider the
reaction of the reader. If the author takes
care to avoid these little problems, it can
bring about later benefits.

Lack of Respect for the
Reader
A lack of respect for the reader ties close-
ly to lack of respect for the document. If
the author has a high respect for the read-
er, it will be apparent in every small part of
the document. If the reader feels the
respect of the author, he or she is more
likely to accept the requirements and work
with the author on future considerations.

An author can show his respect toward
the reader in many ways. These include
giving appropriate information at appro-
priate places and not leaving any loose
ends. A reader who feels the document is
giving him critical information – but not
strict instructions – will feel more freedom
in developing the requirements. This
leaves the reader feeling he or she has an
important contribution to make and is
likely to gain project buy-in. Basically, the
care the author takes in developing the
document can make the reader feel better
about the requirements document.

On the other hand, even a little care-
lessness in preparing the document can
have a very negative effect. Things like
improper formatting or inconsistency in
font size can be as irritating as the errors
mentioned above. If the reader feels the
author was careless about these little
things, he or she can feel a lack of respect
from the author. This can create a recipro-
cal lack of respect for the document.

When the document is prepared with
utmost care, it can demand respect from

the reader. The reader will also feel
respected. The reader will take more care
in analyzing the document and will be
more likely to work with the author to
ensure everything is correct. That mutual
respect can be a strong bond that will con-
tinue through the life of the project. Then
the reader will more likely try to under-
stand the document in detail and be more
likely to cooperate with the author.
Otherwise he or she will always see some-
thing wrong in the document.

When the reader does not have respect
for the document or the way in which the
document is written, then the reader’s own
point of view comes into play. It can often
be very different from the requirements
specified in the document. This can lead to
a dislike or disregard for the author’s point
of view.

Whoever the reader may be, once con-
vinced of the quality of the requirement
or lack thereof, the quality of the subse-
quent work will be affected by the reader’s
response to the requirement.

Lack of Respect for the
Author
When the reader does not have enough
confidence in the author who has prepared
the specifications, the requirements will
not get the consideration they need.
Normally the author’s background is not
shown in the requirements document.
However, the reader’s past history with the
author can color his or her reaction. A bad
history increases the likelihood that he or
she will expect difficulties and view the
quality of the document with skepticism.

If readers have more technical knowl-
edge than the author does, they may not
read the document with the same point of
view as the author. Such readers may
quickly conclude that the document is not
correct. Instead of finding the reason
behind that, readers can assume that the

requirement is wrong due to the author’s
ignorance and lack of skill.

Once the developers conclude that the
author is not to be respected, the readers’
analytical and technical capabilities will go
in a direction of proving that the require-
ments are not feasible. Subsequent require-
ments from the same author are likely to
be dismissed in the same way.

It is not that they intentionally consid-
er the requirements this way, but it is diffi-
cult to overcome that bad initial reaction.
Unless they see the reason, logic, and
intention behind the requirement, they will
never be able to succeed in implementing
it as desired. If they are predisposed to dis-
respect the author, they are not likely to
work with the author to ensure the require-
ments are implemented the right way.

All this does not mean that people
should not give their comments on the
document. The point here is that it should
be done in a reasonable way. Putting some
structure to the requirements review and
analysis procedures will help with this, but
will not solve all the problems caused by
the lack of respect for the author. To
understand the requirements, it is neces-
sary to believe that there is some reason
for them to be written as they are. To
believe that such a reason exists, it is nec-
essary to have respect for their creator.
Cross training between the requirements’
authors and the developers can help them
understand each other’s abilities and con-
straints. This can lead to more communi-
cation and understanding, which can only
lead to better development and better
results.

Two more things can bring out the
emotions of the people involved: changes
to the requirements, and the way in which
change requests are handled.

Changes to the Requirements
Many times the freezing of requirements
does not happen in time because of
changes to the requirements after the proj-
ect team has begun work. Scope creep
happens, but it can lead to major frustra-
tion and even resentment on the part of
the project team. If a lot of changes hap-
pen after the project team has started read-
ing and reviewing the requirements, the
team can lose faith in the project. This is
especially true if changes to the require-
ments document take place after the
design is started.

Most project teams see some risks and
problems due to shifting requirements. If
the requirements are not frozen and are
changed many times, there may be lot of
rework that, in turn, results in added effort
and schedule variances. Unexpected

“Tools and processes
drive the actions and

thinking process involved
in the different phases

of software development.
They do not take

into account the way
people feel.”



26 CROSSTALK The Journal of Defense Software Engineering December 2005

changes bring frustration and can lead to
conflict between the requirements’ author
and the development team. It adds diffi-
culty as the team tries to maintain various
versions of the documents properly.
Juggling the constant changes may lead to
poor quality

However, these problems can be man-
aged to some extent with the help of
good processes and tools. But there are
some aspects related to human emotions
that should be considered more risky and
difficult to handle.

As mentioned earlier, the project team
should develop a liking or at least respect-
ful acceptance toward the requirements.
This will help the team achieve better
design and a better quality work product.
This is not possible unless the require-
ments are frozen. As long as there is a
possibility to change the requirements
document, there will be a feeling that the
requirements can still be improved. It
may also lead the project team to feel that
the requirements will never be right.

Most developers have been on a proj-
ect where there was a major delay in
freezing the document. Let us use an
example where development had to start
when only 60 percent of the require-
ments were clear, and the requirements
document was still undergoing changes.
In such an instance, there can be a lot of
suggestions for how to address the
requirements. If the requirements were
vague enough, they can bring out a num-
ber of suggestions. The team will then
have to work through each of these alter-
natives to determine what was really
desired by the requirements’ author. Give
and take with the author at this point can
produce a series of requirement changes.
It can be difficult to manage the sugges-
tions raised within the project team when
this occurs. As a result of their ability to
make changes to the requirements, the
developers will keep adding their desires
to the requirements.

The problem here is that instead of
spending the efforts on improving the
designs, the project team spends its
efforts on improving the requirements.
No one assigned this task to them, but
the team’s frustration with the vague
requirements will make them take it on
themselves. This creates more work for
them and for the requirements’ author.
The team spends more time on the
requirements’ developer’s task than on
their own assignments for no advantage.
The rework adds time and cost to the
project when it could have been avoided
early on.

To alleviate this problem, the team

should work with the requirements’
developer to reach an understanding early
on in the project. Requirements reviews
can reduce the project team’s frustration
and help build a relationship between the
author and the developers that can influ-
ence future projects. Once a solution is
found, the requirements should be frozen
and the changes limited to fixing prob-
lems.

The Way in Which Change
Requests Are Handled
Regardless of the delay in freezing the
requirements document, there will always
be the possibility of getting change
requests during the life cycle of the proj-
ect. There are some difficulties that are
specific to change request handling.
These include capturing the change
requests in a systematic way, evaluating
the impact of these changes on the cur-
rent development, and tracking them
properly throughout the development life

cycle. Mistakes in any of these tasks will
be harmful to the project and are typical-
ly taken care of in the processes.

But again, the processes can only
address the problems related to the first
two human factors discussed in the
beginning of this article. Mistakes in
these kinds of tasks can happen if either
the action or thinking of the team is not in
a systematic or organized manner. These
mistakes can also happen because of the
feelings of the people involved. If the
developers are already frustrated or irri-
tated with the requirements document,
their feelings can drive their behavior
when handling changes to the require-
ments. If developers are found to be
deviating from a process, it is necessary to
consider not only the risks due to process
considerations, but also the problems that
may arise due to feelings.

If there is no process defined for han-
dling the change requests or if the
defined process is not followed consis-
tently, then it will lead to various assump-
tions and negative feelings among the

team members. People may take it as
favoritism or injustice when the criteria
for accepting or rejecting a change
request are not apparent. If the behavior
of the author or developers is not clearly
understood, hard feelings may result. If
the procedures and guidelines are not
defined and practiced consistently, then
the reason behind approving and reject-
ing the change requests will not be under-
stood correctly by the team.

A large number of changes bring out
the frustration of developers because
they feel they are trying to hit a moving
target. By the same token, if the changes
are not handled properly, they can
increase the level of frustration.

Conclusion
Human emotions play a very important
role in requirements management.
Developers react to requirements in a
number of ways. The range of emotions
they generate come from a variety of rea-
sons. Poor requirements can elicit frustra-
tion, irritation, anger, and disrespect.
Good requirements can bring acceptance,
understanding, and buy-in. Processes can
be defined for capturing, analyzing,
reviewing, implementing, and verifying
the requirements. Tools can be identified
for tracking and implementing the
requirements without errors. However, if
human emotions and feelings are not
addressed, then the desired result may not
be achieved in spite of the use of those
processes and tools.

Frustration and confusion over
requirements can lead to unexpected
behavior by development staff. When
someone behaves in an unexpected way,
people will question their behavior. There
may be an attempt to change that behav-
ior. But there should definitely be anoth-
er consideration, which is understanding the
reason behind the current behavior. Often, that
reason is tied to the emotional response
of the person.

How can an organization deal with
emotional reactions to requirements
problems? The best way is to take the
emotions out of the process as much as
possible. Many of these problems do not
need a separate solution. Identification of
the problem itself can lead to a quick
solution in many cases. However, the fol-
lowing considerations can be adopted to
improve the existing and established
processes in this respect:
• A consistent and well-defined require-

ments definition process can help by
taking the focus off the people and
onto the process. This starts with a
template for the requirements docu-

Open Forum

“A large number of
changes bring out the

frustration of developers
because they feel they

are trying to hit a
moving target.”



December 2005 www.stsc.hill.af.mil 27

Role of Human Emotions in Requirements Management

ment that covers information about
the author and the reasons behind a
particular requirement.

• Maximum care taken while preparing
the requirements document will help
avoid overlooking even the very small
points like spelling mistakes that may
deteriorate the respect on the docu-
ment. Peer reviews can help catch
these kinds of errors and ensure that
the requirements document meets
standards.

• The change request handling process
must be clear, quick, and consistent. It
should not be very easy to add a
change request to the document.
There should definitely be a three-
step process like initiation, evaluation,
and approval. These steps should be
carried out quickly, but they should
not be skipped.

• Involvement of the development
team in reviewing the requirements
early in the process will establish com-
munications between the author and
the developers. Open communication
between the groups will make them all
feel they are part of a team, and they
are more likely to try to reach a mutu-
ally satisfactory result.
To achieve best results, the project

team members should feel a part of the

requirements process and should develop
an involvement with the requirements. If
they have a true stake in the results, their
emotions will be guided toward achieving
a common goal. Defined processes and
support tools should complement their
efforts and improve their possibilities for
success.u

About the Author

Sreevalli Radhika. T.
works for Robert Bosch
India Ltd. as a depart-
ment quality coordina-
tor. She has been in-
volved in the manage-

ment of embedded projects for the past
decade. Radhika is also interested in fic-
tion writing and has published more
than 50 articles. She has a post-graduate
degree in electronics and communica-
tion engineering.

Robert Bosch India Ltd.
Phone: (91-80) 2299-9052
Fax: (91-80) 2299-9156
E-mail: radhika.sreevalli@

in.bosch.com
tsradhika@rediffmail.com

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:
AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

LETTER TO THE EDITOR

Dear CrossTalk Editor,

Regarding the From the Sponsor article
by Tom Christian in the August 2005
CrossTalk. The first paragraph of
his article ends:

“... relentless commitment to qual-
ity: employing peer reviews, con-
figuration control, documenta-
tion, and testing.”

Although these items are all neces-
sary to achieve quality deliverable soft-
ware, they are not sufficient: The one key
item missing from the above list is, in my
view, the most important one, good
design practices.

I have heard said numerous times
over the years, “You cannot test in qual-
ity,” and it is so true. A team can spin its
wheels for months thoroughly testing a
system only to find itself retesting, re-
testing, retesting because every change
seems to break the system in unintended
ways. This is usually because the basic
design of the system is flawed due to

one or more of the following practices:
use of global variables, lack of cohesion,
close coupling, inadequate abstraction,
lack of encapsulation techniques, etc.
(All these principles I mention pre-date
object orientation, yet it is surprising
how little they are understood even
today!) 

A system with a truly good design
could possibly succeed with limited test-
ing, documentation, and peer reviews
(configuration management is always
crucial in my view). But, a poorly
designed system will fail no matter how
much it is tested, reviewed, or docu-
mented.

The larger and more complex the
system, the more crucial it is to use
sound design practices. It does not come
automatically. No specific software lan-
guage can guarantee it. It is a much larg-
er challenge than “properly indenting
your code.” It is sorely needed today
more than ever.

Robert Wolfman
Software Consultant, ITT Avionics



28 CROSSTALK The Journal of Defense Software Engineering December 2005

TOPIC ARTICLE TITLE AUTHOR(S) ISSUE PAGE

Agile Agile Software Development for the Entire Project Granville Miller 12

Extending Agile Methods: A Distributed Project and

Organizational Improvement Perspective

Paul E. McMahon 5

Best Practices Identifying Your Organization's Best Practices David Herron, David Garmus 6 22

The Myth of the Best Practices Silver Bullet Michael W. Evans,

Corinne Segura,

Frank Doherty

9 14

Communication Ports, Protocols, and Services Management Process

for the Department of Defense

Dave R. Basel, Dana Foat,

Cragin Shelton

5 6

Configuration Management Configuration Management Fundamentals Software Technology

Support Center

7 10

Finding CM in CMMI Anne Mette Jonassen Hass 7 26

9

18

Implementing Configuration Management for

Software Testing Projects

Steve Boycan,

Dr. Yuri Chernak

7 4

COTS Security in a COTS-Based Software System Arlene F. Minkiewicz 11 23

Six Steps to a Successful COTS Implementation Arlene F. Minkiewicz 8 17

Design Dependency Models to Manage Software Architecture Neeraj Sangal, Frank Waldman 11 8

Effective Practices for Object-Oriented System

Software Architecting

Ruth McCabe, Mike Polen 6 18

How and Why to Use the Unified Modeling Language Lynn Sanderfer 6 13

Selecting Architecture Products for a Systems

Development Program

Michael S. Russell 11 4

UML 2.0-Based Systems Engineering Using a Model-Driven

Development Approach

Dr. Hans-Peter Hoffman 11 17

UML Design and Auto-Generated Code:

Issues and Practical Solution

Ilya Lipkin,

Dr. A. Kris Huber

11 13

Estimation
COCOMO Suite Methodology and Evolution Dr. Barry Boehm,

Ricardo Valerdi, Jo Ann Lane,

A. Winsor Brown

4 20

Creating Requirements-Based Estimates Before

Requirements Are Complete

Carol A. Dekkers 4 13

Estimating and Managing Project Scope for New Development William Roetzheim 4 4

Inside SEER-SEM Lee Fischman,

Karen McRitchie,

Daniel D. Galorath

4 26

A Method for Improving Developers' Software Size Estimates Lawrence H. Putnam,

Donald T. Putnam,

Donald M. Beckett

4 16

The Statistically Unreliable Nature of Lines of Code Joe Schofield 4 29

Software Cost Estimating Methods for Large Projects Capers Jones 4 8

Information Application-Specific Knowledge Bases Dr. Babak Makkinejad 6 26

Interoperability Software Component Interoperability Jeffery Voas 11 28

Measurement Balanced Scorecards From Golf to Business Bill Ravensberg 8 27

Measure Like a Fighter Pilot Joe H. Lindley 9 19

Performance-Based Earned Value Paul J. Solomon 8 22

Tying Project Measures to Performance Incentives David P. Quinn 9 28

Miscellaneous 17th Annual Systems and Software Technology Conference

Focused on Defense Capabilities

7 16

Delivering Capabilities Through Partnerships Chris D. Moore 8 8

Handheld Computing Col. Kenneth L. Alford, Ph.D. 6 4

Technology Readiness Assessments for IT

and IT-Enabled Systems

Robert Gold, David Jakubek 5 25

Open Source Software Introduction to the User Interface Markup Langage Jonathan E. Schuster 1 15

Open Source Opens Opportunities for Army's

Simulation System

Douglas J. Parsons,

Dr. Robert L. Wittman Jr.

1 11

Open Source Software: Opportunities and Challenges David Tuma 1 6

Opening Up Open Source Michelle Levesque,

Jason Montojo

1 26

ARTICLE INDEX

VOLUME 18



Article Index

December 2005 www.stsc.hill.af.mil 29

CONTINUED ON NEXT PAGE

TOPIC ARTICLE TITLE AUTHOR(S) ISSUE PAGE

Policies, News, and Updates Introducing the Department of Defense Acquisition

Best Practices Clearinghouse

Kathleen Dangle, Laura Dwinnell,

John Hickok, Dr. Richard Turner

5 4

Revitalizing the Software Aspects of Systems Engineering Marvin R. Sambur,

Peter B. Teets
1 4

Process Improvement "But the Auditor Said We Need to ..." Striking a Balance

Between Controls and Productivity

Greg Deller 7 22

Knowledge Management and Process Improvement: A Union

of Two Disciplines

Gregory D. Burke,

William H. Howard

6 Online

Process Therapy Paul Kimmerly 6 29

Why Big Software Projects Fail: The 12 Key Questions Watts S. Humphrey 3 25

Project Management Connecting Earned Value to the Schedule Walt Lipke 6 Online

Quality Acquiring Quality Software Watts S. Humphrey 12 19

Correctness by Construction: A Manifesto for

High-Integrity Software

Martin Croxford,

Dr. Roderick Chapman

12 5

Eliminating Embedded Software Defects Prior to Integration Test Ted L. Bennett, Paul W. Wennberg 12 13

Reengineering Automated Restructuring of Component-Based Software Robert L. Akers, Ira D. Baxter,

Michael Melich, Brian Ellis,

Kenn Luecke

5 Online

Requirements Management Role of Human Emotions in Requirements Management Sreevalli Radhika. T. 12 24

Reuse DO-178B Certified Software: A Formal Reuse Analysis Approach Hoyt Lougee 1 20

Risk Management Inherent Risks in Object-Oriented Development Dr. Peter Hantos 2 13

Managing Acquisition Risk By Applying Proven Best Practices Mike Evans, Corinne Segura,

Frank Doherty

2 22

Risk Management for Systems of Systems Dr. Edmund H. Conrow 2 8

Risk Management (Is Not) for Dummies Lt. Col. Steven R. Glazewski 2 27

Software Risk Management From a System Perspective George Holt 2 18

Understanding Risk Management Software Technology Support Center 2 4

Software Safety and Security Application Security: Protecting the Soft Chewy Center Alec Main 10 26

Attacks and Countermeasures Zaid Dwaikat 10 Online

Creating a Software Assurance Body of Knowledge Samuel T. Redwine Jr. 10 5

Designing for Disaster: Building Survivable Information Systems Ronda R. Henning 10 6

Engineering Security into the Software Development Life Cycle Gary M. McGraw, Nancy R. Mead 10 4

How to Secure Windows PCs and Laptops Terry Bollinger 6 9

The Information Technology Security Arms Race Dr. Steven Hofmeyr 10 15

The MILS Architecture for a Secure Global Information Grid Dr. W. Scott Harrison,

Dr. Nadine Hanebutte,

Dr. Paul W. Oman, Dr. Jim Alves-Foss

10 20

MILS: Architecture for High Assurance Embedded Computing W. Mark Vanfleet, R. William Beckwith,

Dr. Ben Calloni, Jahn A. Luke,

Dr. Carol Taylor, Gordon Uchenik

8 12

Security Issues in Garbage Collection Dr. Chia-Tien Dan Lo,

Dr. Witawas Srisa-an,

Dr. J. Morris Chang

10 Online

Sixteen Standards-Based Practices for Safety and Security Dr. Linda Ibrahim 10 11

Transformational Vulnerability: Management Through Standards Robert A. Martin 5 12

Team Software Process Applying Functional TSP to a Maintenance Project Ellen George, Dr. Steve Janiszewski 9 24

Experiences With the TSP Technology Insertion Ray Trechter, Iraj Hirmanpour 3 13

Microsoft's IT Organization Uses PSP/TSP

to Achieve Engineering Excellence

Carol A. Grojean 3 8

Personal Earned Value: Why Projects Using the Team

Software Process Consistently Meet Schedule Commitments

David Tuma, David R. Webb 3 17

TSP Can Be the Building Blocks for CMMI Alan S. Koch 3 4

A TSP Software Maintenance Life Cycle Chris A. Rickets 2 22

Testing A Correlated Strategic Guide for Software Testing Christopher L. Harlow,

Dr. Santa Falcone

7 18

Key Elements in Fielding Capabilities John D. Holcomb, Michael Hoehn 8 4

Top 5 Articles 2005 Department of Defense Programs Awards 12 4

Lightweight Handheld Mortar Ballistic Computer Mike Patriarca, Mark Zhelesnik 9 4

A NIFTI Solution to Far-Field Antenna Transformation Windie Borodin, Danielle King 9 8

SmartCam 3D Provides New Levels of Situation Awareness Frank Delgado, Mike Abernathy,

Janis White

9 10

U.S. Marines - First Into Battle and First With a Unique Pay

and Personnel System

Jimmy W. Selph 9 6

WARSIM Enters the Scene in Army Training Ed Payne, Col. Kevin Dietrick 9 12

Verification and Validation How to Perform Credible Verification, Validation, and

Accreditation for Modeling and Simulation

Dr. David A. Cook,

Dr. James M. Skinner

5 20

Robert Skalamera



30 CROSSTALK The Journal of Defense Software Engineering December 2005

Departments

Aeronautical Systems Center –
Engineering Directorate Weapon System
Software
https://www.en.wpafb.af.mil/software/software.asp
The Engineering Directorate of the Aeronautical Systems Center
located at Wright-Patterson Air Force Base, Ohio, provides this
informational site on weapon system software. The site provides
updated guidance to address embedded software acquisition
issues. This technical organization is charged with the duty and
responsibility to provide all the engineering support necessary to
maintain the world’s finest Air Force, both today and into the
future.

Systems and Software Consortium
www.software.org/ssci/default.asp
The Systems and Software Consortium (SSCI) was founded in
the late 1980s to provide industry and government a resource for
insight, advice, and tools that could help them address the com-
plex and dynamic world of software and systems development.
SSCI’s focus is on delivering value by improving systems and
software engineering tools and methods that members can apply
to their programs to gain greater efficiencies and profitability.
SSCI membership ranks include industry’s Tier 1 market leaders
as well as key government agencies and academic institutions.

Project Management Institute
www.pmi.org
The Project Management Institute (PMI) claims to be the
world's leading not-for-profit project management professional

association with more than 100,000 members in 125 countries.
Members represent major industries, including aerospace, auto-
motive, business management, construction, engineering, finan-
cial services, information technology, pharmaceuticals, health-
care, and telecommunications. PMI establishes project manage-
ment standards and provides seminars, educational programs,
and professional certification for project leaders.

Defense Contract Management Agency
www.dcma.mil
The Defense Contract Management Agency is the Department
of Defense contract manager, responsible for ensuring federal
acquisition programs, supplies, and services are delivered on
time, at projected cost, and meet all performance requirements.
The DCMA professionals serve as information brokers and in-
plant representatives for military, federal, and allied government
buying agencies – both during the initial stages of the acquisition
cycle and throughout the life of the resulting contracts.

National Institute of Standards and
Technology
www.nist.org
The National Institute of Standards and Technology (NIST) is a
non-regulatory federal agency within the U.S. Commerce
Department’s Technology Administration. NIST’s mission is to
develop and promote measurement, standards, and technology
to enhance productivity, facilitate trade, and improve the quali-
ty of life.

WEB SITES

ISSUE COLUMN TITLE AUTHOR

Issue 1: January Publisher:

BackTalk:

Issue 2: February

Issue 3: March

Issue 4: April

Issue 5: May

Issue 6: June

Issue 7: July

Issue 8: August

Issue 9: September Publisher:

BackTalk:

Issue 11: November

Issue 12: December

Open Source Software

Using Free Software Doesn't Mean It Won't Cost You Anything

High Stakes and Misdemeanors

Elizabeth Starrett

Gary A. Petersen

Risk Management

Sponsor: Risk Management Offers Broad Payoffs

Publisher: Exercising Risk Management Skills

BackTalk: How Do You Make a Peanut Butter and Jelly Sandwich?

Kevin Stamey

Tracy L. Stauder

Mamie Danley Morgan

Team Software Process

Team Software Process Brings Project Success Over Time

TSP Has Multiple Uses

A Few Good Launch Coaches

Randy B. Hill

Elizabeth Starrett

Gary A. Petersen

Sponsor:

Publisher:

BackTalk:

Sponsor:

Publisher:

BackTalk:

Cost Estimation

The Cost Estimation Conundrum

Increasing Confidence in Estimates

How Much for the Elephants?

Thomas F. Christian Jr.

Tracy L. Stauder

Dr. David A. Cook

Capabilities: Building, Protecting, Deploying

Dr. Mom's Approach to Improved Capabilities

Tackling Software Measurement? Try Proverbs.

Brent D. Baxter

Carol A. Dekkers

Sponsor:

Publisher:

BackTalk:

Reality Computing

Technology Fields Too Slowly

Computing Permeates Our Society

You Want Reality Computing? You Can't Handle Reality Computing!

Kevin Stamey

Elizabeth Starrett

Dr. David A. Cook

Publisher:

BackTalk:

Sponsor:

Publisher:

BackTalk:

Configuration Management and Test

Processes Provide the Light of Successs

New Ways to Implement CM and Testing

Software Plumbing

Randy B. Hill

Tracy L. Stauder

Tony Henderson

Systems: Fielding Capabilities

Sponsor:

Publisher:

BackTalk:

Our Job Is to Get It There

Stay Focused on the User

Bayonets and Deployment

Thomas F. Christian Jr.

Elizabeth Starrett

Dr. David A. Cook

Top 5 Department of Defense Program Awards

Integrated Teams and Sound Processes Bring Success

A Model About Nothing

Tracy L. Stauder

Gary A. Petersen

Issue 10: October 

Software Security

Sponsor:

BackTalk:

Software Security: Shifting the Pardigm From Patch Management to Software Assurance

Network Passwords

Joe Jarzombek

Dan Knauer

Design

Sponsor:

Publisher:

BackTalk:

Software: Where We've Been and Where We're Going

Design Focuses on the How

Design? We Don't Need No Stinkin' Design! (or "How to Fail Without Really Trying")

Kevin Stamey

Tracy L. Stauder

Dr. David A. Cook

Total Creation of a Software Project

Sponsor:

Publisher:

BackTalk:

Successful Software Is an Epic Production

Software Development Is More Than Coding

Push for Cheese: A Metaphor for Software Usability

Randy B. Hill

Elizabeth Starrett

Nicole Radziwill,

Amy Shelton

MONTHLY COLUMNS:



BACKTALK

December 2005 www.stsc.hill.af.mil 31

At the National Radio Astronomy Observatory’s (NRAO)
Science Center in Green Bank, W. Va., visitors curious

about radio astronomy and the observatory’s history and oper-
ations will discover an educational, entertaining experience.
Employees also visit the science center, but their thoughts are
more on afternoon snacks rather than distant galaxies. The
employees of NRAO’s Software Development Division in
Green Bank have gained tremendous insight on the topic of
software usability from many visits to the Science Center Café
by pontificating upon the wisdom inherent in the design and
use of the liquid cheese dispenser there.

The cheese dispenser is used to coat nacho chips in the
familiar orange-tinted, viscous plasma prior to the addition of
jalapeno peppers (or other toppers), intended to enhance the
consumer’s experience of the food product. The user interface
is clear and unambiguous, with a single, large, bright yellow
button labeled Push for Cheese. When the button is
depressed, a stream of hot liquid cheese is
expelled from the machine and onto what-
ever lies below. The cheese is remarkably
consistent in its appearance,
texture, and temperature.
There is always only one variety
of cheese dispensed.

Over the past three years, our
team has spent considerable time
and effort to improve the software
systems used to make astronomical
observations with the Robert C. Byrd
Green Bank Telescope (GBT). During
this time, we’ve discovered that the ulti-
mate measure of GBT software usability is
how well the user’s experience conforms to
what happens when they Push for Cheese. Our
users want to press one button, have the software automatical-
ly interpret what they want the telescope to do, then see their
results presented in a comprehensive, straightforward way.
Though it’s a lot to ask from software (especially since there
are thousands of ways the GBT can be configured), similar
concepts have been envisioned for years: In 1950, Turing
argued that within five decades, computers would be intelligent
[1]. In 1990, Newell presented his vision of a fully networked,
intelligent environment in which machines and humans seam-
lessly interact (ubiquitous computing) [2]. At least in our envi-
ronment, the knowledge embodied in the software is closely
related to its perceived usability.

The International Organization for Standardization 9241
Part 11 defines usability as the “extent to which a product can
be used by specified users to achieve specified goals with effec-
tiveness, efficiency, and satisfaction in a specified context of
use” [3]. Implicit in this definition is the notion of expecta-
tions because machines (and software) will only express the
intelligence we seek. Who are our specified users? What is the
context of use? How can we define and measure satisfaction?
Here’s what we’ve learned:
• Our users ultimately want a Push-for-Cheese user interface,

where minimal and straightforward interactions with the soft-

ware achieve the desired result.
• Conversely, users don’t want the software to make too many

assumptions on their behalf. As a result, more options may be
required to achieve the balance between ease of use and soft-
ware that’s too smart for its own good. Push for Cheese assumes
that the consumer wants liquid nacho cheese, which is a fine
assumption for nachos, but not for a grilled cheese sandwich.

• Expectations are critical. Additional options can be designed
into the system, but to add them, we must first establish
requirements then develop, test, and deploy, which requires
time and effort. Anyone who expects Brie or Swiss on their
nachos when they Push for Cheese will be disappointed
unless we’ve planned for other cheeses in advance.

• Even within a well-defined segment of specified users, there
will still be substantial subjective variation in what’s consid-

ered easy to use, which must be aggregated and nor-
malized.

• Establish usability requirements dur-
ing the analysis stages of a project

to set bounds. A user expect-
ing a graphical user interface
won’t like a command-line

driven program; similarly, one
who wants to specify many set-
tings before execution will not be

pleased with intelligent software
that selects and tweaks settings

automatically.
In addition to illustrating

these lessons, Push for Cheese has also
become an effective way to communicate

within our team. When a usability feature
more akin to machine intelligence or ubiquitous

computing is requested, and is posited to us under the guise of
ease of use, we console each other by affirming that they just
want to Push for Cheese. In doing so, we compassionately
acknowledge their desires, and then move to meet them
halfway in implementation – while keeping the Push-for-
Cheese vision for usability close to our hearts.

— Nicole Radziwill
— Amy Shelton

National Radio Astronomy Observatory
nradziwi@nrao.edu

References
1. Taatgen, N.A. “Poppering the Newell Test.” Netherlands:

University of Groningen, 2003 <www.ai.rug.nl/prepubli
cations/BBSAlcom-NT-2003.pdf>.

2. Gray, J. 1999: “What Next? A Dozen Information Technol-
ogy Research Goals.” MSR-TR-99-50. Redmond, WA:
Microsoft Research, June 1999 <http://research.microsoft.
com/research/pubs/view.aspx?msr_tr_id=MSR-TR-99-50>.

3. International Organization for Standardization. “ISO 9241
Part 11: Guidance on Usability.” Geneva, Switzerland: ISO,
1998 <www.userfocus.co.uk/resources/iso9241/part11.
html>.

Push for Cheese:
A Metaphor for Software Usability



CrossTalk is
co-sponsored by the

following organizations:

CrossTalk / 309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

 


	Front Cover
	Table of Contents
	From the Sponsor
	From the Publisher
	Policies, News, and Updates
	2005 Top 5 U.S. Department of Defense Program Awards

	Total Creation of a Software Project
	Correctness by Construction:A Manifesto for High-Integrity Software
	Agile Software Development for the Entire Project
	Eliminating Embedded Software DefectsPrior to Integration Test

	Best Practices
	Acquiring Quality Software

	Coming Events
	Open Forum
	Role of Human Emotions inRequirements Management

	Letter to the Editor
	2005 Article Index
	Web Sites
	BackTalk
	Back Cover



